These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35598183)

  • 21. Higher alkyl sulfatase activity required by microbial inhabitants to remove anionic surfactants in the contaminated surface waters.
    Icgen B; Salik SB; Goksu L; Ulusoy H; Yilmaz F
    Water Sci Technol; 2017 Nov; 76(9-10):2357-2366. PubMed ID: 29144294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic degradation of anionic surfactants by indigenous microorganisms from sediments of a tropical polluted river in Brazil.
    Duarte IC; de Franca P; Okada DY; Do Prada PF; Varesche MB
    Rev Biol Trop; 2015 Mar; 63(1):295-302. PubMed ID: 26299133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater.
    Sigoillot JC; Nguyen MH
    Appl Environ Microbiol; 1992 Apr; 58(4):1308-12. PubMed ID: 1599249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unveiling the origin, fate, and remedial approaches for surfactants in sewage-fed foaming urban (Bellandur) Lake.
    Das R; Hoysall C; Rao L
    Environ Pollut; 2023 Dec; 339():122773. PubMed ID: 37858701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of anionic surfactants and the effect on bacterial indices of pollution.
    El-Zanfaly HT; Nawar SS
    Zentralbl Bakteriol Naturwiss; 1980; 135(6):484-91. PubMed ID: 7456811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments.
    García MT; Campos E; Marsal A; Ribosa I
    Water Res; 2009 Feb; 43(2):295-302. PubMed ID: 18976786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms.
    van Ginkel CG
    Biodegradation; 1996 Apr; 7(2):151-64. PubMed ID: 8882807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alcohol ethoxysulfates (AES) in environmental matrices.
    Sasi S; Rayaroth MP; Aravindakumar CT; Aravind UK
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34167-34186. PubMed ID: 33970421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Naphthalene, phenanthrene and surfactant biodegradation.
    Chen G; Strevett KA; Vanegas BA
    Biodegradation; 2001; 12(6):433-42. PubMed ID: 12051649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment.
    Saravanan A; Thamarai P; Deivayanai VC; Karishma S; Shaji A; Yaashikaa PR
    Chemosphere; 2024 Apr; 354():141698. PubMed ID: 38490608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunnelling.
    Barra Caracciolo A; Cardoni M; Pescatore T; Patrolecco L
    Environ Pollut; 2017 Jul; 226():94-103. PubMed ID: 28411499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biodegradation of monomeric and dimeric alkylammonium surfactants.
    Brycki B; Waligórska M; Szulc A
    J Hazard Mater; 2014 Sep; 280():797-815. PubMed ID: 25244074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of nonionic surfactants and polychlorinated biphenyls by recombinant field application vectors.
    Lajoie CA; Layton AC; Easter JP; Menn FM; Sayler GS
    J Ind Microbiol Biotechnol; 1997 Oct; 19(4):252-62. PubMed ID: 9439001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seasonal factors affecting surfactant biodegradation in Antarctic coastal waters: comparison of a polluted and pristine site.
    George AL
    Mar Environ Res; 2002 May; 53(4):403-15. PubMed ID: 11991210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Use of Pseudomonas and Achromobacter species bacteria--degraders of surface-active agents--for detection and destruction of polycyclic aromatic hydrocarbons].
    Ivashchenko GV; Semenchuk IN
    Ukr Biokhim Zh (1999); 2001; 73(1):148-52. PubMed ID: 11599420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Degradation of a commercial surface-active agent, in the presence of a complementary source of carbon, by a selected bacterial colony in a marine environment].
    Sigoillot JC; Nguyen MH
    Can J Microbiol; 1987 Oct; 33(10):929-32. PubMed ID: 3690420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The identification and performance assessment of dominant bacterial species during linear alkylbenzene sulfonate (LAS)-biodegradation in a bioelectrochemical system.
    Askari A; Vahabzadeh F; Mardanpour MM
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2579-2590. PubMed ID: 34490522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311.
    Ambily PS; Jisha MS
    J Environ Biol; 2012 Jul; 33(4):717-20. PubMed ID: 23359997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential commercial applications of microbial surfactants.
    Banat IM; Makkar RS; Cameotra SS
    Appl Microbiol Biotechnol; 2000 May; 53(5):495-508. PubMed ID: 10855707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants.
    Yu H; Zhu L; Zhou W
    J Hazard Mater; 2007 Apr; 142(1-2):354-61. PubMed ID: 16987596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.