These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35598387)

  • 21. Reduction of maillard browning in spray dried low-lactose milk powders due to protein polysaccharide interactions.
    Sen C; Arora S; Singh R; Sharma V; Meena GS; Singh AK
    Food Res Int; 2024 May; 183():114175. PubMed ID: 38760120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How surface composition of high milk proteins powders is influenced by spray-drying temperature.
    Gaiani C; Morand M; Sanchez C; Tehrany EA; Jacquot M; Schuck P; Jeantet R; Scher J
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):377-84. PubMed ID: 19811896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk.
    Eshpari H; Tong PS; Corredig M
    J Dairy Sci; 2014 Dec; 97(12):7394-401. PubMed ID: 25459904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of hydrolysis on solid-state relaxation and stickiness behavior of sodium caseinate-lactose powders.
    Mounsey JS; Hogan SA; Murray BA; O'Callaghan DJ
    J Dairy Sci; 2012 May; 95(5):2270-81. PubMed ID: 22541456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving rehydration properties of spray-dried milk protein isolates by supplementing soluble caseins.
    Li N; Zhong Q
    Food Res Int; 2021 Dec; 150(Pt A):110770. PubMed ID: 34865785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward a better determination of dairy powders surface composition through XPS matrices development.
    Nikolova Y; Petit J; Sanders C; Gianfrancesco A; Scher J; Gaiani C
    Colloids Surf B Biointerfaces; 2015 Jan; 125():12-20. PubMed ID: 25460597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationships between surface energy analysis and functional characteristics of dairy powders.
    Kondor A; Hogan SA
    Food Chem; 2017 Dec; 237():1155-1162. PubMed ID: 28763964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in physicochemical properties of spray-dried camel milk powder over accelerated storage.
    Ho TM; Chan S; Yago AJE; Shravya R; Bhandari BR; Bansal N
    Food Chem; 2019 Oct; 295():224-233. PubMed ID: 31174753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the crystallization of lactose at different cooling rates from milk and whey permeates in terms of crystal yield and purity.
    Pandalaneni K; Amamcharla JK
    J Dairy Sci; 2018 Oct; 101(10):8805-8821. PubMed ID: 30055919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inter-relationship between lactose crystallization and surface free fat during storage of infant formula.
    Saxena J; Adhikari B; Brkljaca R; Huppertz T; Chandrapala J; Zisu B
    Food Chem; 2020 Aug; 322():126636. PubMed ID: 32283375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of water and solids composition in the control of glass transition and stickiness of milk powders.
    Silalai N; Roos YH
    J Food Sci; 2010 Jun; 75(5):E285-96. PubMed ID: 20629875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insolubility in milk protein concentrates: potential causes and strategies to minimize its occurrence.
    Khalesi M; FitzGerald RJ
    Crit Rev Food Sci Nutr; 2022; 62(25):6973-6989. PubMed ID: 33856251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physicochemical properties and surface composition of infant formula powders.
    Saxena J; Adhikari B; Brkljaca R; Huppertz T; Chandrapala J; Zisu B
    Food Chem; 2019 Nov; 297():124967. PubMed ID: 31253317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.
    Svanborg S; Johansen AG; Abrahamsen RK; Skeie SB
    J Dairy Sci; 2015 Sep; 98(9):5829-40. PubMed ID: 26142868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in surface chemical composition relating to rehydration properties of spray-dried camel milk powder during accelerated storage.
    Ho TM; Ton TT; Gaiani C; Bhandari BR; Bansal N
    Food Chem; 2021 Nov; 361():130136. PubMed ID: 34051599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization kinetics of amorphous lactose, whey-permeate and whey powders.
    Ibach A; Kind M
    Carbohydr Res; 2007 Jul; 342(10):1357-65. PubMed ID: 17445785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colloidal transport phenomena of milk components during convective droplet drying.
    Fu N; Woo MW; Chen XD
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):255-66. PubMed ID: 21703825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technological aspects of lactose-hydrolyzed milk powder.
    Torres JKF; Stephani R; Tavares GM; de Carvalho AF; Costa RGB; de Almeida CER; Almeida MR; de Oliveira LFC; Schuck P; Perrone ÍT
    Food Res Int; 2017 Nov; 101():45-53. PubMed ID: 28941696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat stability of aggregated particles of casein micelles and kappa-carrageenan.
    Flett KL; Corredig M; Goff HD
    J Food Sci; 2010 Jun; 75(5):C433-8. PubMed ID: 20629864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size.
    Anema SG; Li Y
    J Dairy Res; 2003 Feb; 70(1):73-83. PubMed ID: 12617395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.