These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 35598446)
1. Investigating and modeling the toxicity of arsenate on wheat root elongation: Assessing the effects of pH, sulfate and phosphate. Li M; Song N; Song X; Liu J; Su B; Chen X; Guo X; Li M; Zong Q Ecotoxicol Environ Saf; 2022 Jul; 239():113633. PubMed ID: 35598446 [TBL] [Abstract][Full Text] [Related]
2. Extension of a biotic ligand model for predicting the toxicity of metalloid selenate to wheat: The effects of pH, phosphate and sulphate. Wang F; Wang X; Chen Q; Song N Chemosphere; 2021 Feb; 264(Pt 1):128424. PubMed ID: 33032220 [TBL] [Abstract][Full Text] [Related]
3. Modeling of selenite toxicity to wheat root elongation using biotic ligand model: Considering the effects of pH and phosphate anion. Wang F; Song N Environ Pollut; 2021 Mar; 272():115935. PubMed ID: 33223336 [TBL] [Abstract][Full Text] [Related]
4. Biotic ligand modeling to predict the toxicity of HWO Li M; Zhang F; Li S; Wang X; Liu J; Wang B; Ma Y; Song N Ecotoxicol Environ Saf; 2021 Oct; 222():112499. PubMed ID: 34246946 [TBL] [Abstract][Full Text] [Related]
5. Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity. An J; Jeong B; Nam K J Hazard Mater; 2020 Mar; 385():121619. PubMed ID: 31757723 [TBL] [Abstract][Full Text] [Related]
6. Extension of a biotic ligand model for predicting the toxicity of neodymium to wheat: The effects of pH, Ca Li S; Wang XX; Li M; Wang C; Wang F; Zong H; Wang B; Lv Z; Song N; Liu J Ecotoxicol Environ Saf; 2024 Feb; 271():116013. PubMed ID: 38281433 [TBL] [Abstract][Full Text] [Related]
7. Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L.) using the biotic ligand model-based toxic units method. Wu M; Wang X; Jia Z; De Schamphelaere K; Ji D; Li X; Chen X Sci Rep; 2017 Aug; 7(1):9443. PubMed ID: 28842695 [TBL] [Abstract][Full Text] [Related]
8. An improved biotic ligand model (BLM) for predicting Co(II)-toxicity to wheat root elongation: The influences of toxic metal speciation and accompanying ions. Wang X; Song N Ecotoxicol Environ Saf; 2019 Oct; 182():109433. PubMed ID: 31319244 [TBL] [Abstract][Full Text] [Related]
9. Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential. An J Toxics; 2022 Feb; 10(2):. PubMed ID: 35202264 [TBL] [Abstract][Full Text] [Related]
10. Low arsenate influx rate and high phosphorus concentration in wheat (Triticum aestivum L.): A mechanism for arsenate tolerance in wheat plants. Shi G; Ma H; Chen Y; Liu H; Song G; Cai Q; Lou L; Rengel Z Chemosphere; 2019 Jan; 214():94-102. PubMed ID: 30261421 [TBL] [Abstract][Full Text] [Related]
11. Three new acid M Schwendtner K; Kolitsch U Acta Crystallogr C Struct Chem; 2019 Aug; 75(Pt 8):1134-1141. PubMed ID: 31380796 [TBL] [Abstract][Full Text] [Related]
12. Effective Modeling Framework for Quantifying the Potential Impacts of Coexisting Anions on the Toxicity of Arsenate, Selenite, and Vanadate. Ji J; He E; Qiu H; Peijnenburg WJGM; Van Gestel CAM; Cao X Environ Sci Technol; 2020 Feb; 54(4):2379-2388. PubMed ID: 31976662 [TBL] [Abstract][Full Text] [Related]
13. Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model. Luo XS; Li LZ; Zhou DM Chemosphere; 2008 Sep; 73(3):401-6. PubMed ID: 18585752 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of abiotic ligand model for nickel toxicity to wheat (Triticum aestivum). Jiang Y; Gu X; Zhu B; Gu C J Environ Sci (China); 2017 Dec; 62():22-30. PubMed ID: 29289288 [TBL] [Abstract][Full Text] [Related]
15. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat. Wang X; Luo X; Wang Q; Liu Y; Naidu R Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Liu X; Zhang S; Shan X; Zhu YG Chemosphere; 2005 Oct; 61(2):293-301. PubMed ID: 16168752 [TBL] [Abstract][Full Text] [Related]
17. Arsenate toxicity for wheat and lettuce in six Chinese soils with different properties. Cao Q; Hu QH; Baisch C; Khan S; Zhu YG Environ Toxicol Chem; 2009 Sep; 28(9):1946-50. PubMed ID: 19379017 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: Identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. Bianucci E; Furlan A; Tordable MDC; Hernández LE; Carpena-Ruiz RO; Castro S Chemosphere; 2017 Aug; 181():551-561. PubMed ID: 28463730 [TBL] [Abstract][Full Text] [Related]
19. Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate. Wang P; Zhou D; Kinraide TB; Luo X; Li L; Li D; Zhang H Plant Physiol; 2008 Dec; 148(4):2134-43. PubMed ID: 18829983 [TBL] [Abstract][Full Text] [Related]
20. Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction. Shi GL; Lou LQ; Li DJ; Hu ZB; Cai QS Chemosphere; 2017 May; 175():192-199. PubMed ID: 28222373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]