BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35598519)

  • 1. CMC-Net: 3D calf muscle compartment segmentation with sparse annotation.
    Peng Y; Zheng H; Zhang L; Sonka M; Chen DZ
    Med Image Anal; 2022 Jul; 79():102460. PubMed ID: 35598519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KCB-Net: A 3D knee cartilage and bone segmentation network via sparse annotation.
    Peng Y; Zheng H; Liang P; Zhang L; Zaman F; Wu X; Sonka M; Chen DZ
    Med Image Anal; 2022 Nov; 82():102574. PubMed ID: 36126403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assisted annotation in Deep LOGISMOS: Simultaneous multi-compartment 3D MRI segmentation of calf muscles.
    Zhang L; Guo Z; Zhang H; van der Plas E; Koscik TR; Nopoulos PC; Sonka M
    Med Phys; 2023 Aug; 50(8):4916-4929. PubMed ID: 36750977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Image Segmentation With Sparse Annotation by Self-Training and Internal Registration.
    Bitarafan A; Nikdan M; Baghshah MS
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2665-2672. PubMed ID: 33211667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Annotation Sparsification Strategy for 3D Medical Image Segmentation via Representative Selection and Self-Training.
    Zheng H; Zhang Y; Yang L; Wang C; Chen DZ
    Proc AAAI Conf Artif Intell; 2020 Feb; 34(44):6925-6932. PubMed ID: 33274122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse annotation learning for dense volumetric MR image segmentation with uncertainty estimation.
    Osman YBM; Li C; Huang W; Wang S
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035374
    [No Abstract]   [Full Text] [Related]  

  • 7. Light mixed-supervised segmentation for 3D medical image data.
    Yang H; Tan T; Tegzes P; Dong X; Tamada R; Ferenczi L; Avinash G
    Med Phys; 2024 Jan; 51(1):167-178. PubMed ID: 37909833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated 3D U-net based segmentation of neonatal cerebral ventricles from 3D ultrasound images.
    Szentimrey Z; de Ribaupierre S; Fenster A; Ukwatta E
    Med Phys; 2022 Feb; 49(2):1034-1046. PubMed ID: 34958147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation.
    Osman YBM; Li C; Huang W; Wang S
    J Magn Reson Imaging; 2023 Dec; ():. PubMed ID: 38156427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.
    Zhuang M; Chen Z; Wang H; Tang H; He J; Qin B; Yang Y; Jin X; Yu M; Jin B; Li T; Kettunen L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):379-394. PubMed ID: 36048319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotation-efficient training of medical image segmentation network based on scribble guidance in difficult areas.
    Zhuang M; Chen Z; Yang Y; Kettunen L; Wang H
    Int J Comput Assist Radiol Surg; 2024 Jan; 19(1):87-96. PubMed ID: 37233894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-eXpert fusion: An ensemble learning framework to segment 3D TRUS prostate images.
    Beitone C; Troccaz J
    Med Phys; 2022 Aug; 49(8):5138-5148. PubMed ID: 35443086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positional contrastive learning for improved thigh muscle segmentation in MR images.
    Casali N; Scalco E; Taccogna MG; Lauretani F; Porcelli S; Ciuni A; Mastropietro A; Rizzo G
    NMR Biomed; 2024 Jun; ():e5197. PubMed ID: 38822595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated 3D segmentation of MR-imaged calf muscle compartments: Neighborhood relationship enhanced fully convolutional network.
    Guo Z; Zhang H; Chen Z; van der Plas E; Gutmann L; Thedens D; Nopoulos P; Sonka M
    Comput Med Imaging Graph; 2021 Jan; 87():101835. PubMed ID: 33373972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Feasibility Study on Deep Learning Based Brain Tumor Segmentation Using 2D Ellipse Box Areas.
    Ali MB; Bai X; Gu IY; Berger MS; Jakola AS
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
    Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.
    Zhu Y; Hu P; Li X; Tian Y; Bai X; Liang T; Li J
    Med Phys; 2022 Sep; 49(9):5799-5818. PubMed ID: 35833617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.