These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35598752)

  • 1. A new method to estimate 3D cell parameters from 2D microscopy images.
    Urbaniak P; Wronski S; Tarasiuk J; Lipinski P; Kotwicka M
    Biochim Biophys Acta Mol Cell Res; 2022 Sep; 1869(9):119286. PubMed ID: 35598752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LSM-W
    Zubairova US; Verman PY; Oshchepkova PA; Elsukova AS; Doroshkov AV
    BMC Syst Biol; 2019 Mar; 13(Suppl 1):22. PubMed ID: 30836965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D imaging and visualization workflow, using confocal microscopy and advanced image processing for brachyuran crab larvae.
    Kamanli SA; Kihara TC; Ball AD; Morritt D; Clark PF
    J Microsc; 2017 Jun; 266(3):307-323. PubMed ID: 28267872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free observation of three-dimensional morphology change of a single PC12 cell by digital holographic microscopy.
    Mir TA; Shinohara H
    Anal Biochem; 2012 Oct; 429(1):53-7. PubMed ID: 22796499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy.
    Zhang Y; Shin Y; Sung K; Yang S; Chen H; Wang H; Teng D; Rivenson Y; Kulkarni RP; Ozcan A
    Sci Adv; 2017 Aug; 3(8):e1700553. PubMed ID: 28819645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and analysis of three-dimensional cell culture models.
    Graf BW; Boppart SA
    Methods Mol Biol; 2010; 591():211-27. PubMed ID: 19957133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties.
    Nikolaisen J; Nilsson LI; Pettersen IK; Willems PH; Lorens JB; Koopman WJ; Tronstad KJ
    PLoS One; 2014; 9(7):e101365. PubMed ID: 24988307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional reconstruction by confocal laser scanning microscopy in routine pathologic specimens of benign and malignant lesions of the human breast.
    Liu S; Weaver DL; Taatjes DJ
    Histochem Cell Biol; 1997 Apr; 107(4):267-78. PubMed ID: 9151109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Keratinocyte density of the cornea in vivo. Automated measurement with a modified confocal microscopy MICROPHTHAL].
    Stave J; Slowik C; Somodi S; Hahnel C; Grümmer G; Guthoff R
    Klin Monbl Augenheilkd; 1998 Jul; 213(1):38-44. PubMed ID: 9743937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. rcell2: Microscopy-Based Cytometry in R.
    Méndez NA; Beldorati G; Constantinou A; Colman-Lerner A
    Curr Protoc; 2023 Apr; 3(4):e726. PubMed ID: 37074070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells.
    Curl CL; Bellair CJ; Harris PJ; Allman BE; Roberts A; Nugent KA; Delbridge LM
    Clin Exp Pharmacol Physiol; 2004 Dec; 31(12):896-901. PubMed ID: 15659056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.
    Charwat V; Schütze K; Holnthoner W; Lavrentieva A; Gangnus R; Hofbauer P; Hoffmann C; Angres B; Kasper C
    J Biotechnol; 2015 Jul; 205():70-81. PubMed ID: 25687101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: a pragmatic approach.
    Errington RJ; Fricker MD; Wood JL; Hall AC; White NS
    Am J Physiol; 1997 Mar; 272(3 Pt 1):C1040-51. PubMed ID: 9124506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.
    Jaccard N; Griffin LD; Keser A; Macown RJ; Super A; Veraitch FS; Szita N
    Biotechnol Bioeng; 2014 Mar; 111(3):504-17. PubMed ID: 24037521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.