These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35598780)

  • 21. Discovery of 2-amide-3-methylester thiophenes that target SARS-CoV-2 Mac1 and repress coronavirus replication, validating Mac1 as an anti-viral target.
    Wazir S; Parviainen TAO; Pfannenstiel JJ; Duong MTH; Cluff D; Sowa ST; Galera-Prat A; Ferraris D; Maksimainen MM; Fehr AR; Heiskanen JP; Lehtiö L
    bioRxiv; 2023 Dec; ():. PubMed ID: 38234730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell- and tissue-specific manner.
    Kerr CM; Parthasarathy S; Schwarting N; O'Connor JJ; Pfannenstiel JJ; Giri E; More S; Orozco RC; Fehr AR
    J Virol; 2023 Sep; 97(9):e0088523. PubMed ID: 37695054
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Cantini F; Banci L; Altincekic N; Bains JK; Dhamotharan K; Fuks C; Fürtig B; Gande SL; Hargittay B; Hengesbach M; Hutchison MT; Korn SM; Kubatova N; Kutz F; Linhard V; Löhr F; Meiser N; Pyper DJ; Qureshi NS; Richter C; Saxena K; Schlundt A; Schwalbe H; Sreeramulu S; Tants JN; Wacker A; Weigand JE; Wöhnert J; Tsika AC; Fourkiotis NK; Spyroulias GA
    Biomol NMR Assign; 2020 Oct; 14(2):339-346. PubMed ID: 32803496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of 2-Amide-3-methylester Thiophenes that Target SARS-CoV-2 Mac1 and Repress Coronavirus Replication, Validating Mac1 as an Antiviral Target.
    Wazir S; Parviainen TAO; Pfannenstiel JJ; Duong MTH; Cluff D; Sowa ST; Galera-Prat A; Ferraris D; Maksimainen MM; Fehr AR; Heiskanen JP; Lehtiö L
    J Med Chem; 2024 Apr; 67(8):6519-6536. PubMed ID: 38592023
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Xie S; Cao S; Wu J; Xie Z; Liu YT; Fu W; Zhao Q; Liu L; Yang L; Li J
    J Biomol Struct Dyn; 2024 Jul; 42(10):5229-5237. PubMed ID: 37349935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of Drug-Like Ligands for the Mac1 Domain of SARS-CoV-2 Nsp3.
    Virdi RS; Bavisotto RV; Hopper NC; Vuksanovic N; Melkonian TR; Silvaggi NR; Frick DN
    SLAS Discov; 2020 Dec; 25(10):1162-1170. PubMed ID: 32981460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell and tissue specific manner.
    Kerr CM; Parthasarathy S; Schwarting N; O'Connor JJ; Giri E; More S; Orozco RC; Fehr AR
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, Synthesis and Evaluation of Inhibitors of the SARS-CoV2 nsp3 Macrodomain.
    Sherrill LM; Joya EE; Walker A; Roy A; Alhammad YM; Atobatele M; Wazir S; Abbas G; Keane P; Zhuo J; Leung AKL; Johnson DK; Lehtiö L; Fehr AR; Ferraris D
    bioRxiv; 2022 Feb; ():. PubMed ID: 35262078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GS-441524-Diphosphate-Ribose Derivatives as Nanomolar Binders and Fluorescence Polarization Tracers for SARS-CoV-2 and Other Viral Macrodomains.
    Peng K; Wallace SD; Bagde SR; Shang J; Anmangandla A; Jana S; Fromme JC; Lin H
    ACS Chem Biol; 2024 May; 19(5):1093-1105. PubMed ID: 38646883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural, Biophysical, and Biochemical Elucidation of the SARS-CoV-2 Nonstructural Protein 3 Macro Domain.
    Lin MH; Chang SC; Chiu YC; Jiang BC; Wu TH; Hsu CH
    ACS Infect Dis; 2020 Nov; 6(11):2970-2978. PubMed ID: 32946224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of potent SARS-CoV-2 nsp3 macrodomain inhibitors uncovers lack of translation to cellular antiviral response.
    Lee AA; Amick I; Aschenbrenner JC; Barr HM; Benjamin J; Brandis A; Cohen G; Diaz-Tapia R; Duberstein S; Dixon J; Cousins D; Fairhead M; Fearon D; Frick J; Gayvert J; Godoy AS; Griffin EJ; Huber K; Koekemoer L; Lahav N; Marples PG; McGovern BL; Mehlman T; Robinson MC; Singh U; Szommer T; Tomlinson CWE; Vargo T; von Delft F; Wang S; White K; Williams E; Winokan M
    bioRxiv; 2024 Aug; ():. PubMed ID: 39229055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure and biochemical activity of the macrodomain from rubella virus p150.
    Stoll GA; Nikolopoulos N; Zhai H; Zhang L; Douse CH; Modis Y
    J Virol; 2024 Feb; 98(2):e0177723. PubMed ID: 38289106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature.
    Correy GJ; Kneller DW; Phillips G; Pant S; Russi S; Cohen AE; Meigs G; Holton JM; Gahbauer S; Thompson MC; Ashworth A; Coates L; Kovalevsky A; Meilleur F; Fraser JS
    Sci Adv; 2022 May; 8(21):eabo5083. PubMed ID: 35622909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence.
    McPherson RL; Abraham R; Sreekumar E; Ong SE; Cheng SJ; Baxter VK; Kistemaker HA; Filippov DV; Griffin DE; Leung AK
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1666-1671. PubMed ID: 28143925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling.
    Russo LC; Tomasin R; Matos IA; Manucci AC; Sowa ST; Dale K; Caldecott KW; Lehtiö L; Schechtman D; Meotti FC; Bruni-Cardoso A; Hoch NC
    J Biol Chem; 2021 Sep; 297(3):101041. PubMed ID: 34358560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo.
    Taha TY; Suryawanshi RK; Chen IP; Correy GJ; McCavitt-Malvido M; O'Leary PC; Jogalekar MP; Diolaiti ME; Kimmerly GR; Tsou CL; Gascon R; Montano M; Martinez-Sobrido L; Krogan NJ; Ashworth A; Fraser JS; Ott M
    PLoS Pathog; 2023 Aug; 19(8):e1011614. PubMed ID: 37651466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: from the apo form to ligand complexes.
    Michalska K; Kim Y; Jedrzejczak R; Maltseva NI; Stols L; Endres M; Joachimiak A
    IUCrJ; 2020 Sep; 7(Pt 5):814-824. PubMed ID: 32939273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and X-ray diffraction at room temperature.
    Correy GJ; Kneller DW; Phillips G; Pant S; Russi S; Cohen AE; Meigs G; Holton JM; Gahbauer S; Thompson MC; Ashworth A; Coates L; Kovalevsky A; Meilleur F; Fraser JS
    bioRxiv; 2022 Feb; ():. PubMed ID: 35169801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Fluorescence Polarization Assay for Macrodomains Facilitates the Identification of Potent Inhibitors of the SARS-CoV-2 Macrodomain.
    Anmangandla A; Jana S; Peng K; Wallace SD; Bagde SR; Drown BS; Xu J; Hergenrother PJ; Fromme JC; Lin H
    ACS Chem Biol; 2023 May; 18(5):1200-1207. PubMed ID: 37126856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of Drug-like Ligands for the Mac1 Domain of SARS-CoV-2 Nsp3.
    Virdi RS; Bavisotto RV; Hopper NC; Vuksanovic N; Melkonian TR; Silvaggi NR; Frick DN
    bioRxiv; 2020 Sep; ():. PubMed ID: 32676591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.