BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35599106)

  • 1. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress.
    Chen X; Wu J; Yang F; Zhou M; Wang R; Huang J; Rong Y; Liu J; Wang S
    J Adv Res; 2023 Mar; 45():127-140. PubMed ID: 35599106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snow flea antifreeze peptide for cryopreservation of lactic acid bacteria.
    Chen X; Wu J; Li X; Yang F; Huang D; Huang J; Wang S; Guyonnet V
    NPJ Sci Food; 2022 Feb; 6(1):10. PubMed ID: 35115563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoprotective Activity and Action Mechanism of Antifreeze Peptides Obtained from Tilapia Scales on Streptococcus thermophilus during Cold Stress.
    Chen X; Wu J; Li L; Wang S
    J Agric Food Chem; 2019 Feb; 67(7):1918-1926. PubMed ID: 30689371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryoprotective effect of antifreeze glycopeptide analogues obtained by nonenzymatic glycation on Streptococcus thermophilus and its possible action mechanism.
    Chen X; Wang S
    Food Chem; 2019 Aug; 288():239-247. PubMed ID: 30902288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Expression of Antifreeze Peptides in Food Grade Lactococcus lactis and Evaluation of Their Cryoprotective Activity.
    Zhang L; Jin Q; Luo J; Wu J; Wang S; Wang Z; Gong S; Zhang W; Lan X
    J Food Sci; 2018 May; 83(5):1311-1320. PubMed ID: 29660758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage.
    Chen X; Li L; Yang F; Wu J; Wang S
    Food Chem Toxicol; 2020 Feb; 136():111056. PubMed ID: 31846719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from Pichia pastoris GS115 on Hydrated Gluten Proteins during Freezing.
    Liu M; Liang Y; Zhang H; Wu G; Wang L; Qian H; Qi X
    J Agric Food Chem; 2018 Jun; 66(24):6151-6161. PubMed ID: 29863868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides.
    Chen X; Wu J; Li X; Yang F; Yu L; Li X; Huang J; Wang S
    Food Chem; 2022 Mar; 371():131054. PubMed ID: 34555708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the quality regulating mechanism of antifreeze peptides on frozen surimi: From macro to micro.
    Yang F; Jiang W; Chen X; Wu J; Huang J; Cai X; Wang S
    Food Res Int; 2023 Jan; 163():112299. PubMed ID: 36596202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brassica juncea leaf cuticle contains xylose and mannose (xylomannan) which inhibit ice recrystallization on the leaf surface.
    Yadav K; Arya M; Prakash S; Jha BS; Manchanda P; Kumar A; Deswal R
    Planta; 2023 Jul; 258(2):44. PubMed ID: 37460860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation on the ice crystal formation process of large yellow croaker (Pseudosciaena crocea) and the effect of multiple cryoprotectants pre-soaking treatments on frozen quality.
    Yang Z; Ye G; Yang D; Xie J; Huo Y
    Cryobiology; 2023 Dec; 113():104580. PubMed ID: 37625476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes.
    Mahatabuddin S; Tsuda S
    Adv Exp Med Biol; 2018; 1081():321-337. PubMed ID: 30288717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Novel Antifreeze Peptides from
    Yang F; Jiang W; Chen X; Chen X; Wu J; Huang J; Cai X; Wang S
    J Agric Food Chem; 2022 Nov; 70(44):14148-14156. PubMed ID: 36314886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidic Antifreeze Materials: Prospects and Challenges.
    Surís-Valls R; Voets IK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanisms and applications of cryoprotectants in aquatic products: An overview.
    Liu Z; Yang W; Wei H; Deng S; Yu X; Huang T
    Food Chem; 2023 May; 408():135202. PubMed ID: 36525728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryoprotective effect of an insect antifreeze protein MpAFP 698 and its mutants from the desert beetle Microdera punctipennis.
    Jiang M; Ma J; Qiu LM
    Cryo Letters; 2011; 32(5):436-46. PubMed ID: 22020466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems.
    Du L; Betti M
    J Agric Food Chem; 2016 Jun; 64(25):5232-40. PubMed ID: 27293017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifreeze protein type III addition to freezing extender comprehensively improves post-thaw sperm properties in Okinawan native Agu pig.
    Masuda Y; Kheawkanha T; Nagahama A; Kawasaki K; Konno T; Yamanaka K; Tatemoto H
    Anim Reprod Sci; 2023 May; 252():107232. PubMed ID: 37075564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Apoplastic Antifreeze Proteins of
    Short SE; Zamorano M; Aranzaez-Ríos C; Lee-Estevez M; Díaz R; Quiñones J; Ulloa-Rodríguez P; Villalobos EF; Bravo LA; Graether SP; Farías JG
    Biomolecules; 2024 Feb; 14(2):. PubMed ID: 38397411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.