These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35599495)

  • 21. Deciphering the LRRK code: LRRK1 and LRRK2 phosphorylate distinct Rab proteins and are regulated by diverse mechanisms.
    Malik AU; Karapetsas A; Nirujogi RS; Mathea S; Chatterjee D; Pal P; Lis P; Taylor M; Purlyte E; Gourlay R; Dorward M; Weidlich S; Toth R; Polinski NK; Knapp S; Tonelli F; Alessi DR
    Biochem J; 2021 Feb; 478(3):553-578. PubMed ID: 33459343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular effects mediated by pathogenic LRRK2: homing in on Rab-mediated processes.
    Madero-Pérez J; Fdez E; Fernández B; Lara Ordóñez AJ; Blanca Ramírez M; Romo Lozano M; Rivero-Ríos P; Hilfiker S
    Biochem Soc Trans; 2017 Feb; 45(1):147-154. PubMed ID: 28202668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding LRRK2 kinase activity in preclinical models and human subjects through quantitative analysis of LRRK2 and pT73 Rab10.
    Wang X; Negrou E; Maloney MT; Bondar VV; Andrews SV; Montalban M; Llapashtica C; Maciuca R; Nguyen H; Solanoy H; Arguello A; Przybyla L; Moerke NJ; Huntwork-Rodriguez S; Henry AG
    Sci Rep; 2021 Jun; 11(1):12900. PubMed ID: 34145320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathogenic LRRK2 regulates ciliation probability upstream of tau tubulin kinase 2 via Rab10 and RILPL1 proteins.
    Sobu Y; Wawro PS; Dhekne HS; Yeshaw WM; Pfeffer SR
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rab10 Phosphorylation Detection by LRRK2 Activity Using SDS-PAGE with a Phosphate-binding Tag.
    Ito G; Tomita T
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RAB12-LRRK2 complex suppresses primary ciliogenesis and regulates centrosome homeostasis in astrocytes.
    Li X; Zhu H; Huang BT; Li X; Kim H; Tan H; Zhang Y; Choi I; Peng J; Xu P; Sun J; Yue Z
    Nat Commun; 2024 Sep; 15(1):8434. PubMed ID: 39343966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Divergent Effects of G2019S and R1441C LRRK2 Mutations on LRRK2 and Rab10 Phosphorylations in Mouse Tissues.
    Iannotta L; Biosa A; Kluss JH; Tombesi G; Kaganovich A; Cogo S; Plotegher N; Civiero L; Lobbestael E; Baekelandt V; Cookson MR; Greggio E
    Cells; 2020 Oct; 9(11):. PubMed ID: 33105882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysosomal positioning regulates Rab10 phosphorylation at LRRK2
    Kluss JH; Beilina A; Williamson CD; Lewis PA; Cookson MR; Bonet-Ponce L
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2205492119. PubMed ID: 36256825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation.
    Fasiczka R; Naaldijk Y; Brahmia B; Hilfiker S
    Biochem Soc Trans; 2023 Apr; 51(2):587-595. PubMed ID: 36929701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LRRK2 and Rab GTPases.
    Pfeffer SR
    Biochem Soc Trans; 2018 Dec; 46(6):1707-1712. PubMed ID: 30467121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RAB8, RAB10 and RILPL1 contribute to both LRRK2 kinase-mediated centrosomal cohesion and ciliogenesis deficits.
    Lara Ordónez AJ; Fernández B; Fdez E; Romo-Lozano M; Madero-Pérez J; Lobbestael E; Baekelandt V; Aiastui A; López de Munaín A; Melrose HL; Civiero L; Hilfiker S
    Hum Mol Genet; 2019 Nov; 28(21):3552-3568. PubMed ID: 31428781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LRRK2 and Rab10 coordinate macropinocytosis to mediate immunological responses in phagocytes.
    Liu Z; Xu E; Zhao HT; Cole T; West AB
    EMBO J; 2020 Oct; 39(20):e104862. PubMed ID: 32853409
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Petridi S; Middleton CA; Ugbode C; Fellgett A; Covill L; Elliott CJH
    G3 (Bethesda); 2020 Jun; 10(6):1903-1914. PubMed ID: 32321836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate MS-based Rab10 Phosphorylation Stoichiometry Determination as Readout for LRRK2 Activity in Parkinson's Disease.
    Karayel Ö; Tonelli F; Virreira Winter S; Geyer PE; Fan Y; Sammler EM; Alessi DR; Steger M; Mann M
    Mol Cell Proteomics; 2020 Sep; 19(9):1546-1560. PubMed ID: 32601174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pathway for Parkinson's Disease LRRK2 kinase to block primary cilia and Sonic hedgehog signaling in the brain.
    Dhekne HS; Yanatori I; Gomez RC; Tonelli F; Diez F; Schüle B; Steger M; Alessi DR; Pfeffer SR
    Elife; 2018 Nov; 7():. PubMed ID: 30398148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elevated LRRK2 autophosphorylation in brain-derived and peripheral exosomes in LRRK2 mutation carriers.
    Wang S; Liu Z; Ye T; Mabrouk OS; Maltbie T; Aasly J; West AB
    Acta Neuropathol Commun; 2017 Nov; 5(1):86. PubMed ID: 29166931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo.
    Kluss JH; Mazza MC; Li Y; Manzoni C; Lewis PA; Cookson MR; Mamais A
    Mol Neurodegener; 2021 Mar; 16(1):17. PubMed ID: 33741046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation.
    Madero-Pérez J; Fdez E; Fernández B; Lara Ordóñez AJ; Blanca Ramírez M; Gómez-Suaga P; Waschbüsch D; Lobbestael E; Baekelandt V; Nairn AC; Ruiz-Martínez J; Aiastui A; López de Munain A; Lis P; Comptdaer T; Taymans JM; Chartier-Harlin MC; Beilina A; Gonnelli A; Cookson MR; Greggio E; Hilfiker S
    Mol Neurodegener; 2018 Jan; 13(1):3. PubMed ID: 29357897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration.
    Jeong GR; Jang EH; Bae JR; Jun S; Kang HC; Park CH; Shin JH; Yamamoto Y; Tanaka-Yamamoto K; Dawson VL; Dawson TM; Hur EM; Lee BD
    Mol Neurodegener; 2018 Feb; 13(1):8. PubMed ID: 29439717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endosomal traffic and glutamate synapse activity are increased in VPS35 D620N mutant knock-in mouse neurons, and resistant to LRRK2 kinase inhibition.
    Kadgien CA; Kamesh A; Milnerwood AJ
    Mol Brain; 2021 Sep; 14(1):143. PubMed ID: 34530877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.