BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 35599739)

  • 1. The Glial Cells Respond to Spinal Cord Injury.
    Wang R; Zhou R; Chen Z; Gao S; Zhou F
    Front Neurol; 2022; 13():844497. PubMed ID: 35599739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial Cells Shape Pathology and Repair After Spinal Cord Injury.
    Gaudet AD; Fonken LK
    Neurotherapeutics; 2018 Jul; 15(3):554-577. PubMed ID: 29728852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More attention on glial cells to have better recovery after spinal cord injury.
    Hassanzadeh S; Jalessi M; Jameie SB; Khanmohammadi M; Bagher Z; Namjoo Z; Davachi SM
    Biochem Biophys Rep; 2021 Mar; 25():100905. PubMed ID: 33553683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glial cells on remyelination after spinal cord injury.
    Wang HF; Liu XK; Li R; Zhang P; Chu Z; Wang CL; Liu HR; Qi J; Lv GY; Wang GY; Liu B; Li Y; Wang YY
    Neural Regen Res; 2017 Oct; 12(10):1724-1732. PubMed ID: 29171439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury.
    Duncan GJ; Manesh SB; Hilton BJ; Assinck P; Plemel JR; Tetzlaff W
    Glia; 2020 Feb; 68(2):227-245. PubMed ID: 31433109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The therapeutic potential of microRNAs to ameliorate spinal cord injury by regulating oligodendrocyte progenitor cells and remyelination.
    Qiu S; Dai H; Wang Y; Lv Y; Yu B; Yao C
    Front Cell Neurosci; 2024; 18():1404463. PubMed ID: 38812792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of microglia in mouse spinal cord alters the retrograde CNS plasticity observed following peripheral axon injury.
    Hutchinson JM; Isaacson LG
    Brain Res; 2019 Oct; 1721():146328. PubMed ID: 31295468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury.
    Alizadeh A; Karimi-Abdolrezaee S
    J Physiol; 2016 Jul; 594(13):3539-52. PubMed ID: 26857216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.
    Assinck P; Duncan GJ; Plemel JR; Lee MJ; Stratton JA; Manesh SB; Liu J; Ramer LM; Kang SH; Bergles DE; Biernaskie J; Tetzlaff W
    J Neurosci; 2017 Sep; 37(36):8635-8654. PubMed ID: 28760862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury.
    Rodriguez JP; Coulter M; Miotke J; Meyer RL; Takemaru K; Levine JM
    J Neurosci; 2014 Jul; 34(31):10285-97. PubMed ID: 25080590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.
    Wang Y; Cheng X; He Q; Zheng Y; Kim DH; Whittemore SR; Cao QL
    J Neurosci; 2011 Apr; 31(16):6053-8. PubMed ID: 21508230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutically targeting astrocytes with stem and progenitor cell transplantation following traumatic spinal cord injury.
    Falnikar A; Li K; Lepore AC
    Brain Res; 2015 Sep; 1619():91-103. PubMed ID: 25251595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord.
    Church JS; Kigerl KA; Lerch JK; Popovich PG; McTigue DM
    J Neurosci; 2016 Jun; 36(23):6352-64. PubMed ID: 27277810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of Spinal Cord Oligodendrocytes to Neuroinflammatory Diseases and Pain.
    Borghi SM; Fattori V; Hohmann MSN; Verri WA
    Curr Med Chem; 2019; 26(31):5781-5810. PubMed ID: 29788868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafted bone marrow stromal cells: a contributor to glial repair after spinal cord injury.
    Zhang LX; Yin YM; Zhang ZQ; Deng LX
    Neuroscientist; 2015 Jun; 21(3):277-89. PubMed ID: 24777423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury.
    Bartus K; Burnside ER; Galino J; James ND; Bennett DLH; Bradbury EJ
    Glia; 2019 Jun; 67(6):1036-1046. PubMed ID: 30637799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies.
    Dulamea AO
    Neural Regen Res; 2017 Dec; 12(12):1939-1944. PubMed ID: 29323026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering glial scar after spinal cord injury.
    Zhang Y; Yang S; Liu C; Han X; Gu X; Zhou S
    Burns Trauma; 2021; 9():tkab035. PubMed ID: 34761050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.