BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35599900)

  • 1. Characterization of T-Circles and Their Formation Reveal Similarities to
    Singer K; Lee LY; Yuan J; Gelvin SB
    Front Plant Sci; 2022; 13():849930. PubMed ID: 35599900
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of Arabidopsis Ku80 deletion on the integration of the left border of T-DNA into plant chromosomal DNA via Agrobacterium tumefaciens.
    Yoshihara R; Mitomi Y; Okada M; Shibata H; Tanokami M; Nakajima Y; Inui H; Oono Y; Furudate H; Tanaka S
    Genes Genet Syst; 2020 Oct; 95(4):173-182. PubMed ID: 32848122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins.
    Park SY; Vaghchhipawala Z; Vasudevan B; Lee LY; Shen Y; Singer K; Waterworth WM; Zhang ZJ; West CE; Mysore KS; Gelvin SB
    Plant J; 2015 Mar; 81(6):934-46. PubMed ID: 25641249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant DNA Repair and
    Gelvin SB
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445162
    [No Abstract]   [Full Text] [Related]  

  • 5. Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants.
    Zhu QH; Ramm K; Eamens AL; Dennis ES; Upadhyaya NM
    Plant Sci; 2006 Sep; 171(3):308-22. PubMed ID: 22980200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.
    Zhang J; Cai L; Cheng J; Mao H; Fan X; Meng Z; Chan KM; Zhang H; Qi J; Ji L; Hong Y
    Transgenic Res; 2008 Apr; 17(2):293-306. PubMed ID: 17549600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration.
    Mysore KS; Bassuner B; Deng XB; Darbinian NS; Motchoulski A; Ream W; Gelvin SB
    Mol Plant Microbe Interact; 1998 Jul; 11(7):668-83. PubMed ID: 9650299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium T-DNA integration in somatic cells does not require the activity of DNA polymerase θ.
    Nishizawa-Yokoi A; Saika H; Hara N; Lee LY; Toki S; Gelvin SB
    New Phytol; 2021 Mar; 229(5):2859-2872. PubMed ID: 33105034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration.
    De Buck S; Jacobs A; Van Montagu M; Depicker A
    Plant J; 1999 Nov; 20(3):295-304. PubMed ID: 10571890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration.
    Vaghchhipawala ZE; Vasudevan B; Lee S; Morsy MR; Mysore KS
    Plant Cell; 2012 Oct; 24(10):4110-23. PubMed ID: 23064322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into recognition of the T-DNA border repeats as termination sites for T-strand synthesis by Agrobacterium tumefaciens.
    Podevin N; De Buck S; De Wilde C; Depicker A
    Transgenic Res; 2006 Oct; 15(5):557-71. PubMed ID: 16830227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences.
    Windels P; De Buck S; Van Bockstaele E; De Loose M; Depicker A
    Plant Physiol; 2003 Dec; 133(4):2061-8. PubMed ID: 14645727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis.
    Gallego ME; Bleuyard JY; Daoudal-Cotterell S; Jallut N; White CI
    Plant J; 2003 Sep; 35(5):557-65. PubMed ID: 12940949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants.
    Singer K; Shiboleth YM; Li J; Tzfira T
    Plant Physiol; 2012 Sep; 160(1):511-22. PubMed ID: 22797657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of KU80 in T-DNA integration in plant cells.
    Li J; Vaidya M; White C; Vainstein A; Citovsky V; Tzfira T
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19231-6. PubMed ID: 16380432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration.
    Kumar S; Fladung M
    Plant J; 2002 Aug; 31(4):543-51. PubMed ID: 12182710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants.
    Anand A; Krichevsky A; Schornack S; Lahaye T; Tzfira T; Tang Y; Citovsky V; Mysore KS
    Plant Cell; 2007 May; 19(5):1695-708. PubMed ID: 17496122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. vir-induced recombination in Agrobacterium. Physical characterization of precise and imprecise T-circle formation.
    Timmerman B; Van Montagu M; Zambryski P
    J Mol Biol; 1988 Sep; 203(2):373-84. PubMed ID: 3199438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium T-strand production in vitro: sequence-specific cleavage and 5' protection of single-stranded DNA templates by purified VirD2 protein.
    Jasper F; Koncz C; Schell J; Steinbiss HH
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):694-8. PubMed ID: 8290583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.