These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35600047)
21. The risk factors and predictive nomogram of human albumin infusion during the perioperative period of posterior lumbar interbody fusion: a study based on 2015-2020 data from a local hospital. Liu B; Pan J; Zong H; Wang Z J Orthop Surg Res; 2021 Oct; 16(1):654. PubMed ID: 34717707 [TBL] [Abstract][Full Text] [Related]
22. An interactive nomogram to predict healthcare-associated infections in ICU patients: A multicenter study in GuiZhou Province, China. Zhang M; Yang H; Mou X; Wang L; He M; Zhang Q; Wu K; Cheng J; Wu W; Li D; Xu Y; Chao J PLoS One; 2019; 14(7):e0219456. PubMed ID: 31306445 [TBL] [Abstract][Full Text] [Related]
23. Development of a nomogram to predict the prognosis of patients with secondary bone tumors in the intensive care unit: a retrospective analysis based on the MIMIC IV database. Li W; Li J; Cai J J Cancer Res Clin Oncol; 2024 Mar; 150(3):164. PubMed ID: 38546896 [TBL] [Abstract][Full Text] [Related]
24. Development and validation of the prediction model for mortality in patients with diabetic kidney disease in intensive care unit: a study based on medical information Mart for intensive care. Jin W; Jin H; Su X; Che M; Wang Q; Gu L; Ni Z Ren Fail; 2023; 45(2):2257808. PubMed ID: 37724537 [TBL] [Abstract][Full Text] [Related]
25. Dynamic nomogram for predicting acute kidney injury in patients with acute ischemic stroke: A retrospective study. Zhu G; Fu Z; Jin T; Xu X; Wei J; Cai L; Yu W Front Neurol; 2022; 13():987684. PubMed ID: 36176552 [TBL] [Abstract][Full Text] [Related]
26. [Construction of a predictive model for early acute kidney injury risk in intensive care unit septic shock patients based on machine learning]. Zhang S; Tang S; Rong S; Zhu M; Liu J; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Mar; 34(3):255-259. PubMed ID: 35574741 [TBL] [Abstract][Full Text] [Related]
27. A nomogram incorporating functional and tubular damage biomarkers to predict the risk of acute kidney injury for septic patients. Ma J; Deng Y; Lao H; Ouyang X; Liang S; Wang Y; Yao F; Deng Y; Chen C BMC Nephrol; 2021 May; 22(1):176. PubMed ID: 33985459 [TBL] [Abstract][Full Text] [Related]
28. [Development of acute kidney injury prognostic model for critically ill patients based on MIMIC-III database]. Li M; Yang H; Yang W; Wei B; Zhang Y; Xie R; Chu P Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Aug; 33(8):949-954. PubMed ID: 34590562 [TBL] [Abstract][Full Text] [Related]
29. A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients. Yang S; Su T; Huang L; Feng LH; Liao T BMC Nephrol; 2021 May; 22(1):173. PubMed ID: 33971853 [TBL] [Abstract][Full Text] [Related]
30. The predictive values of admission characteristics for 28-day all-cause mortality in septic patients with diabetes mellitus: a study from the MIMIC database. Yang C; Jiang Y; Zhang C; Min Y; Huang X Front Endocrinol (Lausanne); 2023; 14():1237866. PubMed ID: 37608790 [TBL] [Abstract][Full Text] [Related]
31. Development and validation of a model for predicting the early occurrence of RF in ICU-admitted AECOPD patients: a retrospective analysis based on the MIMIC-IV database. Hu S; Zhang Y; Cui Z; Tan X; Chen W BMC Pulm Med; 2024 Jun; 24(1):302. PubMed ID: 38926685 [TBL] [Abstract][Full Text] [Related]
32. Development and validation of a risk nomogram for postoperative acute kidney injury in older patients undergoing liver resection: a pilot study. Yu Y; Zhang C; Zhang F; Liu C; Li H; Lou J; Xu Z; Liu Y; Cao J; Mi W BMC Anesthesiol; 2022 Jan; 22(1):22. PubMed ID: 35026992 [TBL] [Abstract][Full Text] [Related]
33. Developing and validating a prediction model for in-hospital mortality in patients with ventilator-associated pneumonia in the ICU. Han X; Wu W; Zhao H; Wang S Ann Palliat Med; 2022 May; 11(5):1799-1810. PubMed ID: 35672896 [TBL] [Abstract][Full Text] [Related]
34. Construction and validation of a predictive model of pneumonia for ICU patients with traumatic brain injury (TBI). Geng X; Wu H; Liu C; Qi L; Ballah AK; Che W; Wu S; Fu T; Li N; Wei X; Cheng R; Pang Z; Ji H; Wang Y; Wang X Neurosurg Rev; 2023 Nov; 46(1):308. PubMed ID: 37985473 [TBL] [Abstract][Full Text] [Related]
35. A clinical nomogram predicting unplanned intensive care unit admission after hip fracture surgery. Ju J; Zhang P; Wang Y; Kou Y; Fu Z; Jiang B; Zhang D Surgery; 2021 Jul; 170(1):291-297. PubMed ID: 33622571 [TBL] [Abstract][Full Text] [Related]
36. A prospective study of acute kidney injury in the intensive care unit: development and validation of a risk prediction model. Wang Q; Tang Y; Zhou J; Qin W J Transl Med; 2019 Nov; 17(1):359. PubMed ID: 31690326 [TBL] [Abstract][Full Text] [Related]
37. Development of a Nomogram to Predict 28-Day Mortality of Patients With Sepsis-Induced Coagulopathy: An Analysis of the MIMIC-III Database. Lu Z; Zhang J; Hong J; Wu J; Liu Y; Xiao W; Hua T; Yang M Front Med (Lausanne); 2021; 8():661710. PubMed ID: 33889591 [No Abstract] [Full Text] [Related]
38. A Nomogram for Predicting Acute Respiratory Failure After Cervical Traumatic Spinal Cord Injury Based on Admission Clinical Findings. Xie Y; Wang Y; Zhou Y; Liu M; Li S; Bao Y; Jiang W; Tang S; Li F; Xue H; Li L; Gong X; Liu Y; Wang W; Li T Neurocrit Care; 2022 Apr; 36(2):421-433. PubMed ID: 34346037 [TBL] [Abstract][Full Text] [Related]
39. The nomogram to predict the occurrence of sepsis-associated encephalopathy in elderly patients in the intensive care units: A retrospective cohort study. Zhao Q; Xiao J; Liu X; Liu H Front Neurol; 2023; 14():1084868. PubMed ID: 36816550 [TBL] [Abstract][Full Text] [Related]
40. A risk nomogram for predicting prolonged intensive care unit stays in patients with chronic obstructive pulmonary disease. Cheng H; Li J; Wei F; Yang X; Yuan S; Huang X; Zhou F; Lyu J Front Med (Lausanne); 2023; 10():1177786. PubMed ID: 37484842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]