These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 35600090)
1. Lipid nanoparticle delivers phenylalanine ammonia lyase mRNA to the liver leading to catabolism and clearance of phenylalanine in a phenylketonuria mouse model. Diaz-Trelles R; Lee S; Kuakini K; Park J; Dukanovic A; Gonzalez JA; Dam T; Kim JH; Vega JB; Sablad M; Karmali PP; Tachikawa K; Chivukula P Mol Genet Metab Rep; 2022 Sep; 32():100882. PubMed ID: 35600090 [TBL] [Abstract][Full Text] [Related]
2. Blood phenylalanine reduction reverses gene expression changes observed in a mouse model of phenylketonuria. Manek R; Zhang YV; Berthelette P; Hossain M; Cornell CS; Gans J; Anarat-Cappillino G; Geller S; Jackson R; Yu D; Singh K; Ryan S; Bangari DS; Xu EY; Kyostio-Moore SRM Sci Rep; 2021 Nov; 11(1):22886. PubMed ID: 34819582 [TBL] [Abstract][Full Text] [Related]
3. Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Sarkissian CN; Gámez A Mol Genet Metab; 2005 Dec; 86 Suppl 1():S22-6. PubMed ID: 16165390 [TBL] [Abstract][Full Text] [Related]
4. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria. Bell SM; Wendt DJ; Zhang Y; Taylor TW; Long S; Tsuruda L; Zhao B; Laipis P; Fitzpatrick PA PLoS One; 2017; 12(3):e0173269. PubMed ID: 28282402 [TBL] [Abstract][Full Text] [Related]
5. Development of an mRNA replacement therapy for phenylketonuria. Perez-Garcia CG; Diaz-Trelles R; Vega JB; Bao Y; Sablad M; Limphong P; Chikamatsu S; Yu H; Taylor W; Karmali PP; Tachikawa K; Chivukula P Mol Ther Nucleic Acids; 2022 Jun; 28():87-98. PubMed ID: 35356682 [TBL] [Abstract][Full Text] [Related]
6. Phenylketonuria: translating research into novel therapies. Ho G; Christodoulou J Transl Pediatr; 2014 Apr; 3(2):49-62. PubMed ID: 26835324 [TBL] [Abstract][Full Text] [Related]
7. Expression of phenylalanine ammonia lyase as an intracellularly free and extracellularly cell surface-immobilized enzyme on a gut microbe as a live biotherapeutic for phenylketonuria. Jiang Y; Sun B; Qian F; Dong F; Xu C; Zhong W; Huang R; Zhai Q; Jiang Y; Yang S Sci China Life Sci; 2023 Jan; 66(1):127-136. PubMed ID: 35907113 [TBL] [Abstract][Full Text] [Related]
8. Pegvaliase for the treatment of phenylketonuria: Results of the phase 2 dose-finding studies with long-term follow-up. Burton BK; Longo N; Vockley J; Grange DK; Harding CO; Decker C; Li M; Lau K; Rosen O; Larimore K; Thomas J; Mol Genet Metab; 2020 Aug; 130(4):239-246. PubMed ID: 32593547 [TBL] [Abstract][Full Text] [Related]
9. Unmet needs in PKU and the disease impact on the day-to-day lives in Brazil: Results from a survey with 228 patients and their caregivers. Martins AM; Pessoa ALS; Quesada AA; Ribeiro EM Mol Genet Metab Rep; 2020 Sep; 24():100624. PubMed ID: 32742934 [TBL] [Abstract][Full Text] [Related]
10. Phenylalanine hydroxylase mRNA rescues the phenylketonuria phenotype in mice. Cacicedo ML; Weinl-Tenbruck C; Frank D; Limeres MJ; Wirsching S; Hilbert K; Pasha Famian MA; Horscroft N; Hennermann JB; Zepp F; Chevessier-Tünnesen F; Gehring S Front Bioeng Biotechnol; 2022; 10():993298. PubMed ID: 36277393 [TBL] [Abstract][Full Text] [Related]
11. Phenylalanine ammonia lyase (PAL): From discovery to enzyme substitution therapy for phenylketonuria. Levy HL; Sarkissian CN; Scriver CR Mol Genet Metab; 2018 Aug; 124(4):223-229. PubMed ID: 29941359 [TBL] [Abstract][Full Text] [Related]
12. Present and future of lipid nanoparticle-mRNA technology in phenylketonuria disease treatment. Diaz-Trelles R; Perez-Garcia CG Int Rev Cell Mol Biol; 2022; 372():159-174. PubMed ID: 36064263 [TBL] [Abstract][Full Text] [Related]
13. Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. Durrer KE; Allen MS; Hunt von Herbing I PLoS One; 2017; 12(5):e0176286. PubMed ID: 28520731 [TBL] [Abstract][Full Text] [Related]
14. Biochemical analysis of Centaurea depressa phenylalanine ammonia lyase (PAL) for biotechnological applications in phenylketonuria (PKU). Babaoğlu Aydaş S; Şirin S; Aslim B Pharm Biol; 2016 Dec; 54(12):2838-2844. PubMed ID: 27246528 [TBL] [Abstract][Full Text] [Related]
16. Paper-based biosensor based on phenylalnine ammonia lyase hybrid nanoflowers for urinary phenylalanine measurement. Sun B; Wang Z; Wang X; Qiu M; Zhang Z; Wang Z; Cui J; Jia S Int J Biol Macromol; 2021 Jan; 166():601-610. PubMed ID: 33130266 [TBL] [Abstract][Full Text] [Related]
17. Hepatocytes from wild-type or heterozygous donors are equally effective in achieving successful therapeutic liver repopulation in murine phenylketonuria (PKU). Hamman KJ; Winn SR; Harding CO Mol Genet Metab; 2011 Nov; 104(3):235-40. PubMed ID: 21917493 [TBL] [Abstract][Full Text] [Related]
18. A new therapy prevents intellectual disability in mouse with phenylketonuria. Pascucci T; Rossi L; Colamartino M; Gabucci C; Carducci C; Valzania A; Sasso V; Bigini N; Pierigè F; Viscomi MT; Ventura R; Cabib S; Magnani M; Puglisi-Allegra S; Leuzzi V Mol Genet Metab; 2018 May; 124(1):39-49. PubMed ID: 29661557 [TBL] [Abstract][Full Text] [Related]
19. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Thomas J; Levy H; Amato S; Vockley J; Zori R; Dimmock D; Harding CO; Bilder DA; Weng HH; Olbertz J; Merilainen M; Jiang J; Larimore K; Gupta S; Gu Z; Northrup H; Mol Genet Metab; 2018 May; 124(1):27-38. PubMed ID: 29653686 [TBL] [Abstract][Full Text] [Related]
20. Induction, titration, and maintenance dosing regimen in a phase 2 study of pegvaliase for control of blood phenylalanine in adults with phenylketonuria. Zori R; Thomas JA; Shur N; Rizzo WB; Decker C; Rosen O; Li M; Schweighardt B; Larimore K; Longo N Mol Genet Metab; 2018 Nov; 125(3):217-227. PubMed ID: 30146451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]