BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35600219)

  • 1. Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapies.
    Shahgolzari M; Fiering S
    J Cancer Immunol (Wilmington); 2022; 4(1):22-29. PubMed ID: 35600219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies.
    Shahgolzari M; Dianat-Moghadam H; Fiering S
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):1076-1085. PubMed ID: 34375725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors.
    Shahgolzari M; Dianat-Moghadam H; Yavari A; Fiering SN; Hefferon K
    Vaccines (Basel); 2022 Aug; 10(9):. PubMed ID: 36146510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Virus Nanoparticles for Vaccine Applications.
    Santoni M; Zampieri R; Avesani L
    Curr Protein Pept Sci; 2020; 21(4):344-356. PubMed ID: 32048964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ vaccination: Harvesting low hanging fruit on the cancer immunotherapy tree.
    Sheen MR; Fiering S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1524. PubMed ID: 29667346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity.
    Brown M
    Cancer Treat Res; 2022; 183():91-129. PubMed ID: 35551657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Virus Nanoparticles Combat Cancer.
    Shahgolzari M; Venkataraman S; Osano A; Akpa PA; Hefferon K
    Vaccines (Basel); 2023 Jul; 11(8):. PubMed ID: 37631846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.
    Ni K; Luo T; Nash GT; Lin W
    Acc Chem Res; 2020 Sep; 53(9):1739-1748. PubMed ID: 32808760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cowpea Mosaic Virus Outperforms Other Members of the Secoviridae as In Situ Vaccine for Cancer Immunotherapy.
    Beiss V; Mao C; Fiering SN; Steinmetz NF
    Mol Pharm; 2022 May; 19(5):1573-1585. PubMed ID: 35333531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alfalfa mosaic virus nanoparticles-based
    Shahgolzari M; Pazhouhandeh M; Milani M; Fiering S; Khosroushahi AY
    Nanomedicine (Lond); 2021 Jan; 16(2):97-107. PubMed ID: 33442986
    [No Abstract]   [Full Text] [Related]  

  • 11. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade.
    Mao C; Beiss V; Ho GW; Fields J; Steinmetz NF; Fiering S
    J Immunother Cancer; 2022 Dec; 10(12):. PubMed ID: 36460333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern recognition receptor agonists in pathogen vaccines mediate antitumor T-cell cross-priming.
    Aleynick M; Svensson-Arvelund J; Pantsulaia G; Kim K; Rose SA; Upadhyay R; Yellin M; Marsh H; Oreper D; Jhunjhunwala S; Moussion CC; Merad M; Brown BD; Brody JD
    J Immunother Cancer; 2023 Jul; 11(7):. PubMed ID: 37487664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Next Generation of Pattern Recognition Receptor Agonists: Improving Response Rates in Cancer Immunotherapy.
    O' Donovan DH; Mao Y; Mele DA
    Curr Med Chem; 2020; 27(34):5654-5674. PubMed ID: 31250749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques.
    Kasturi SP; Kozlowski PA; Nakaya HI; Burger MC; Russo P; Pham M; Kovalenkov Y; Silveira ELV; Havenar-Daughton C; Burton SL; Kilgore KM; Johnson MJ; Nabi R; Legere T; Sher ZJ; Chen X; Amara RR; Hunter E; Bosinger SE; Spearman P; Crotty S; Villinger F; Derdeyn CA; Wrammert J; Pulendran B
    J Virol; 2017 Feb; 91(4):. PubMed ID: 27928002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethyleneimine-CpG Nanocomplex as an In Situ Vaccine for Boosting Anticancer Immunity in Melanoma.
    Xu Y; Ma S; Si X; Zhao J; Yu H; Ma L; Song W; Tang Z
    Macromol Biosci; 2021 Feb; 21(2):e2000207. PubMed ID: 33107202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of T-Cell- and B-Cell-Based Therapeutic Cancer Vaccines.
    Li WH; Su JY; Li YM
    Acc Chem Res; 2022 Sep; 55(18):2660-2671. PubMed ID: 36048514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo cancer vaccination: Which dendritic cells to target and how?
    Chiang CL; Kandalaft LE
    Cancer Treat Rev; 2018 Dec; 71():88-101. PubMed ID: 30390423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses.
    Vasou A; Sultanoglu N; Goodbourn S; Randall RE; Kostrikis LG
    Viruses; 2017 Jul; 9(7):. PubMed ID: 28703784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable Hydrogel Containing Cowpea Mosaic Virus Nanoparticles Prevents Colon Cancer Growth.
    Nkanga CI; Steinmetz NF
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2518-2525. PubMed ID: 35522951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.