BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35600296)

  • 41. The narrowing of dendrite branches across nodes follows a well-defined scaling law.
    Liao M; Liang X; Howard J
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34215693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scaling laws of vascular trees: of form and function.
    Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H894-903. PubMed ID: 16143652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water transport in plants obeys Murray's law.
    McCulloh KA; Sperry JS; Adler FR
    Nature; 2003 Feb; 421(6926):939-42. PubMed ID: 12607000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On-site evaluation of CT-based fractional flow reserve using simple boundary conditions for computational fluid dynamics.
    Yoshikawa Y; Nakamoto M; Nakamura M; Hoshi T; Yamamoto E; Imai S; Kawase Y; Okubo M; Shiomi H; Kondo T; Matsuo H; Kimura T; Saito N
    Int J Cardiovasc Imaging; 2020 Feb; 36(2):337-346. PubMed ID: 31628575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retinal Vascular Branching in Healthy and Diabetic Subjects.
    Luo T; Gast TJ; Vermeer TJ; Burns SA
    Invest Ophthalmol Vis Sci; 2017 May; 58(5):2685-2694. PubMed ID: 28525557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A generalized optimization principle for asymmetric branching in fluidic networks.
    Stephenson D; Lockerby DA
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160451. PubMed ID: 27493583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remodeling of conduit arteries in hypertension and flow-overload obeys a minimum energy principle.
    Zhang W; Kassab GS
    J Biomech; 2008 Aug; 41(11):2567-70. PubMed ID: 18606418
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data.
    Trachet B; Bols J; De Santis G; Vandenberghe S; Loeys B; Segers P
    J Biomech Eng; 2011 Dec; 133(12):121006. PubMed ID: 22206423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimal Branching Structure of Fluidic Networks with Permeable Walls.
    Pepe VR; Rocha LAO; Miguel AF
    Biomed Res Int; 2017; 2017():5284816. PubMed ID: 28607933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Image-based morphometric studies of human coronary artery bifurcations with/without coronary artery disease.
    Chen X; Dai J; Lin J; Wu Y; Ouyang J; Huang M; Zhuang J; Fang Y; Wu J
    Comput Methods Biomech Biomed Engin; 2020 Nov; ():1-17. PubMed ID: 33252247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expanding the coronary tree reconstruction to smaller arteries improves the accuracy of FFR
    Wu X; Wu B; He W; Wang X; Wang K; Yan Z; Cheng Z; Huang Y; Zhang W; Chen R; Liu J; Wang J; Hu X
    Eur Radiol; 2021 Dec; 31(12):8967-8974. PubMed ID: 34032918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fractal-Like Flow-Fields with Minimum Entropy Production for Polymer Electrolyte Membrane Fuel Cells.
    Kizilova N; Sauermoser M; Kjelstrup S; Pollet BG
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interspecific scaling of blood flow rates and arterial sizes in mammals.
    Seymour RS; Hu Q; Snelling EP; White CR
    J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30877224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wall shear stress as measured in vivo: consequences for the design of the arterial system.
    Reneman RS; Hoeks AP
    Med Biol Eng Comput; 2008 May; 46(5):499-507. PubMed ID: 18324431
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A modification of Murray's law for shear-thinning rheology.
    McGah PM; Capobianchi M
    J Biomech Eng; 2015 May; 137(5):054503. PubMed ID: 25565456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coronary microvascular dysfunction assessed by continuous intracoronary thermodilution: A comparative study with index of microvascular resistance.
    Rivero F; Gutiérrez-Barrios A; Gomez-Lara J; Fuentes-Ferrer M; Cuesta J; Keulards DCJ; Pardo-Sanz A; Bastante T; Izaga-Torralba E; Gomez-Hospital JA; García-Guimaraes M; Pijls NHJ; Alfonso F
    Int J Cardiol; 2021 Jun; 333():1-7. PubMed ID: 33684380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Volume flow estimation in the precapillary mesenteric microvasculature in vivo and the principle of constant pressure gradient.
    Koutsiaris AG
    Biorheology; 2005; 42(6):479-91. PubMed ID: 16369085
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variability of arterial wall shear stress, its dependence on vessel diameter and implications for Murray's Law.
    Friedman MH
    Atherosclerosis; 2009 Mar; 203(1):47-8. PubMed ID: 18715565
    [No Abstract]   [Full Text] [Related]  

  • 60. Computational study of the risk of restenosis in coronary bypasses.
    Guerciotti B; Vergara C; Ippolito S; Quarteroni A; Antona C; Scrofani R
    Biomech Model Mechanobiol; 2017 Feb; 16(1):313-332. PubMed ID: 27542073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.