These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35600611)

  • 1. Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning.
    Jiang H; Zou L; Huang D; Feng Q
    Front Neurosci; 2022; 16():883693. PubMed ID: 35600611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography.
    Liang H; He W; Xu Z
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508
    [No Abstract]   [Full Text] [Related]  

  • 4. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.
    Raju SMTU; Dipto SA; Hossain MI; Chowdhury MAS; Haque F; Nashrah AT; Nishan A; Khan MMH; Hashem MMA
    Med Biol Eng Comput; 2024 Jul; ():. PubMed ID: 38963467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A continuous cuffless blood pressure measurement from optimal PPG characteristic features using machine learning algorithms.
    Nishan A; M Taslim Uddin Raju S; Hossain MI; Dipto SA; M Tanvir Uddin S; Sijan A; Chowdhury MAS; Ahmad A; Mahamudul Hasan Khan M
    Heliyon; 2024 Mar; 10(6):e27779. PubMed ID: 38533045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation.
    Harfiya LN; Chang CC; Li YH
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography.
    Ma C; Zhang P; Song F; Sun Y; Fan G; Zhang T; Feng Y; Zhang G
    IEEE J Biomed Health Inform; 2023 May; 27(5):2219-2230. PubMed ID: 35700247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography.
    Wu H; Ji Z; Li M
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks.
    Wang W; Mohseni P; Kilgore K; Najafizadeh L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1031-1034. PubMed ID: 34891464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Adaptive Weight Learning-Based Multitask Deep Network for Continuous Blood Pressure Estimation Using Electrocardiogram Signals.
    Fan X; Wang H; Zhao Y; Li Y; Tsui KL
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 16. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals.
    Malayeri AB; Khodabakhshi MB
    Sci Rep; 2022 Apr; 12(1):6633. PubMed ID: 35459260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring.
    Kachuee M; Kiani MM; Mohammadzade H; Shabany M
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):859-869. PubMed ID: 27323356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.