BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35600644)

  • 1. The efficiency of MSC-based targeted AIE nanoparticles for gastric cancer diagnosis and treatment: An experimental study.
    Ouyang S; Zhang Y; Yao S; Feng L; Li P; Zhu S
    Bioeng Transl Med; 2022 May; 7(2):e10278. PubMed ID: 35600644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-
    Wang X; Gao J; Ouyang X; Wang J; Sun X; Lv Y
    Int J Nanomedicine; 2018; 13():5231-5248. PubMed ID: 30237710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor microenvironment targeting with dual stimuli-responsive nanoparticles based on small heat shock proteins for antitumor drug delivery.
    Shi K; Wang Y; Zhou X; Gui H; Xu N; Wu S; He C; Zhao Z
    Acta Biomater; 2020 Sep; 114():369-383. PubMed ID: 32688090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy.
    Ding Y; Sun Z; Tong Z; Zhang S; Min J; Xu Q; Zhou L; Mao Z; Xia H; Wang W
    Theranostics; 2020; 10(12):5195-5208. PubMed ID: 32373207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Payload Capacity and Anti-Tumor Efficacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles.
    Moku G; Layek B; Trautman L; Putnam S; Panyam J; Prabha S
    Cancers (Basel); 2019 Apr; 11(4):. PubMed ID: 30959908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor Microenvironment-Responsive Shell/Core Composite Nanoparticles for Enhanced Stability and Antitumor Efficiency Based on a pH-Triggered Charge-Reversal Mechanism.
    Luo Q; Shi W; Wang P; Zhang Y; Meng J; Zhang L
    Pharmaceutics; 2021 Jun; 13(6):. PubMed ID: 34208641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cRGDyK modified pH responsive nanoparticles for specific intracellular delivery of doxorubicin.
    Qiu L; Hu Q; Cheng L; Li L; Tian C; Chen W; Chen Q; Hu W; Xu L; Yang J; Cheng L; Chen D
    Acta Biomater; 2016 Jan; 30():285-298. PubMed ID: 26602824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloprotein-triggered, cell penetrating peptide-modified star-shaped nanoparticles for tumor targeting and cancer therapy.
    Guo F; Fu Q; Zhou K; Jin C; Wu W; Ji X; Yan Q; Yang Q; Wu D; Li A; Yang G
    J Nanobiotechnology; 2020 Mar; 18(1):48. PubMed ID: 32183823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.
    Layek B; Sadhukha T; Panyam J; Prabha S
    Mol Cancer Ther; 2018 Jun; 17(6):1196-1206. PubMed ID: 29592881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AIE-active polymeric micelles based on modified chitosan for bioimaging-guided targeted delivery and controlled release of paclitaxel.
    Shi H; Liang N; Liu J; Li S; Gong X; Yan P; Sun S
    Carbohydr Polym; 2021 Oct; 269():118327. PubMed ID: 34294339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paclitaxel-loaded poly(glycolide-co-ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 2000 succinate nanoparticles for lung cancer therapy.
    Zhao T; Chen H; Dong Y; Zhang J; Huang H; Zhu J; Zhang W
    Int J Nanomedicine; 2013; 8():1947-57. PubMed ID: 23696703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paclitaxel-Loaded TPGS-b-PCL Nanoparticles: In Vitro Cytotoxicity and Cellular Uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane®.
    Bernabeu E; Gonzalez L; Legaspi MJ; Moretton MA; Chiappetta DA
    J Nanosci Nanotechnol; 2016 Jan; 16(1):160-70. PubMed ID: 27398441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment.
    Zhang Z; Qian H; Huang J; Sha H; Zhang H; Yu L; Liu B; Hua D; Qian X
    Int J Nanomedicine; 2018; 13():4961-4975. PubMed ID: 30214200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-functionalized nanoparticles loaded microbubbles for enhancement of drug uptake.
    Li Y; Zhang X; Luo W; Wang D; Yang L; Wang J; Zhang L; Zhang S; Luo S; Wang Y
    Ultrasonics; 2018 Jul; 87():82-90. PubMed ID: 29475016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin-Loaded Hybrid Nanoparticles: Microchannel-Based Preparation and Antitumor Activity in a Mouse Model.
    Hong W; Gao Y; Lou B; Ying S; Wu W; Ji X; Yu N; Jiao Y; Wang H; Zhou X; Li A; Guo F; Yang G
    Int J Nanomedicine; 2021; 16():4147-4159. PubMed ID: 34168445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paclitaxel-loaded nanoparticles decorated with bivalent fragment HAb18 F(ab')
    Jin C; Bai L; Lin L; Wang S; Yin X
    Artif Cells Nanomed Biotechnol; 2018 Aug; 46(5):1076-1084. PubMed ID: 28776396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon.
    Wu P; Zhou Q; Zhu H; Zhuang Y; Bao J
    BMC Cancer; 2020 Apr; 20(1):354. PubMed ID: 32345258
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Wan X; Sun R; Bao Y; Zhang C; Wu Y; Gong Y
    Mol Pharm; 2021 Nov; 18(11):3990-3998. PubMed ID: 34591491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.
    Gullotti E; Park J; Yeo Y
    Pharm Res; 2013 Aug; 30(8):1956-67. PubMed ID: 23609560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Donor-Acceptor-Type Conjugated Polymer-Based Multicolored Drug Carriers with Tunable Aggregation-Induced Emission Behavior for Self-Illuminating Cancer Therapy.
    Wang Z; Wang C; Gan Q; Cao Y; Yuan H; Hua D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):41853-41861. PubMed ID: 31668068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.