These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 35600969)

  • 1. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury.
    Li Z; Zhao T; Ding J; Gu H; Wang Q; Wang Y; Zhang D; Gao C
    Bioact Mater; 2023 Jan; 19():550-568. PubMed ID: 35600969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable Hydrogel Loaded with CDs and FTY720 Combined with Neural Stem Cells for the Treatment of Spinal Cord Injury.
    Qi Z; Pan S; Yang X; Zhang R; Qin C; Yan H; Zhu L; Kong W
    Int J Nanomedicine; 2024; 19():4081-4101. PubMed ID: 38736654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model.
    Huang C; Liu Y; Ding J; Dai Y; Le L; Wang L; Ding E; Yang J
    Cell Tissue Res; 2021 Jul; 385(1):65-85. PubMed ID: 33760948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment.
    Liu Z; Guo S; Dong L; Wu P; Li K; Li X; Li X; Qian H; Fu Q
    Mater Today Bio; 2022 Dec; 16():100425. PubMed ID: 36186847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
    Fan L; Dong J; He X; Zhang C; Zhang T
    Hum Exp Toxicol; 2021 Oct; 40(10):1612-1623. PubMed ID: 33779331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive Oxygen Species Scavenging Hydrogel Regulates Stem Cell Behavior and Promotes Bone Healing in Osteoporosis.
    Ye Y; Zhong H; Huang S; Lai W; Huang Y; Sun C; Zhang Y; Zheng S
    Tissue Eng Regen Med; 2023 Oct; 20(6):981-992. PubMed ID: 37697063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration.
    Liu D; Lu G; Shi B; Ni H; Wang J; Qiu Y; Yang L; Zhu Z; Yi X; Du X; Shi B
    Adv Healthc Mater; 2023 Jul; 12(18):e2300123. PubMed ID: 36989238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration.
    Lin L; Lin H; Bai S; Zheng L; Zhang X
    Neurochem Int; 2018 May; 115():80-84. PubMed ID: 29458076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation.
    Han S; Wang B; Li X; Xiao Z; Han J; Zhao Y; Fang Y; Yin Y; Chen B; Dai J
    J Biomed Mater Res A; 2016 Jul; 104(7):1759-69. PubMed ID: 26990583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Methylprednisolone in Treatment of Spinal Cord Injured with Bone Marrow Mesenchymal Stem Cells Transplantation in Rats and Its Effect on the Expressions of Tumor Necrosis Factor-α and Interleukin-1β.
    Yang XM; Cheng YY; Zhang ZL; Kang C
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2017 Oct; 39(5):615-622. PubMed ID: 29125102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GDNF-Loaded Polydopamine Nanoparticles-Based Anisotropic Scaffolds Promote Spinal Cord Repair by Modulating Inhibitory Microenvironment.
    Ma J; Li J; Wang X; Li M; Teng W; Tao Z; Xie J; Ma Y; Shi Q; Li B; Saijilafu
    Adv Healthc Mater; 2023 Mar; 12(8):e2202377. PubMed ID: 36549669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury.
    Li J; Li H; Cai S; Bai S; Cai H; Zhang X
    Stem Cell Res Ther; 2021 May; 12(1):289. PubMed ID: 34001228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.
    Jia Y; Wu D; Zhang R; Shuang W; Sun J; Hao H; An Q; Liu Q
    Neurosci Lett; 2014 Jun; 573():46-51. PubMed ID: 24837681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury.
    Shen H; Xu B; Yang C; Xue W; You Z; Wu X; Ma D; Shao D; Leong K; Dai J
    Biomaterials; 2022 Jan; 280():121279. PubMed ID: 34847433
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Sorouri F; Hosseini P; Sharifzadeh M; Kiani S; Khoobi M
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42251-42270. PubMed ID: 37647536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MnO
    Li L; Xiao B; Mu J; Zhang Y; Zhang C; Cao H; Chen R; Patra HK; Yang B; Feng S; Tabata Y; Slater NKH; Tang J; Shen Y; Gao J
    ACS Nano; 2019 Dec; 13(12):14283-14293. PubMed ID: 31769966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury.
    Han D; Wu C; Xiong Q; Zhou L; Tian Y
    Cell Biochem Biophys; 2015 Apr; 71(3):1341-7. PubMed ID: 25388837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration.
    Zhou P; Xu P; Guan J; Zhang C; Chang J; Yang F; Xiao H; Sun H; Zhang Z; Wang M; Hu J; Mao Y
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111214. PubMed ID: 32599502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidative and Conductive Nanoparticles-Embedded Cell Niche for Neural Differentiation and Spinal Cord Injury Repair.
    Wu C; Chen S; Zhou T; Wu K; Qiao Z; Zhang Y; Xin N; Liu X; Wei D; Sun J; Luo H; Zhou L; Fan H
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52346-52361. PubMed ID: 34699166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.