BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35601933)

  • 1. Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: A photoacoustic data-driven approach.
    Grasso V; Willumeit-Rӧmer R; Jose J
    Photoacoustics; 2022 Jun; 26():100367. PubMed ID: 35601933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automatic Unmixing Approach to Detect Tissue Chromophores from Multispectral Photoacoustic Imaging.
    Grasso V; Holthof J; Jose J
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating relative chromophore concentrations from multiwavelength photoacoustic images using independent component analysis.
    An L; Cox BT
    J Biomed Opt; 2018 Jul; 23(7):1-10. PubMed ID: 29992796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of skin tone on photoacoustic imaging and oximetry.
    Else TR; Hacker L; Gröhl J; Bunce EV; Tao R; Bohndiek SE
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11506. PubMed ID: 38125716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning assisted classification of spectral photoacoustic imaging of carotid plaques.
    Cano C; Mohammadian Rad N; Gholampour A; van Sambeek M; Pluim J; Lopata R; Wu M
    Photoacoustics; 2023 Oct; 33():100544. PubMed ID: 37671317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelength-dependent error minimization for quantitative spectroscopic photoacoustic tomography with a ring-array system.
    Pattyn A; Yan Y; Mehrmohammadi M
    Z Med Phys; 2023 Aug; 33(3):444-451. PubMed ID: 37225605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging.
    Cano C; Matos C; Gholampour A; van Sambeek M; Lopata R; Wu M
    Sci Rep; 2023 Mar; 13(1):4119. PubMed ID: 36914717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical wavelength selection for improved spectroscopic photoacoustic imaging.
    Luke GP; Nam SY; Emelianov SY
    Photoacoustics; 2013 May; 1(2):36-42. PubMed ID: 25302148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling combined ultrasound and photoacoustic imaging: Simulations aiding device development and artificial intelligence.
    Agrawal S; Suresh T; Garikipati A; Dangi A; Kothapalli SR
    Photoacoustics; 2021 Dec; 24():100304. PubMed ID: 34584840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion Compensation for 3D Multispectral Handheld Photoacoustic Imaging.
    Yoon C; Lee C; Shin K; Kim C
    Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning.
    McRae TD; Oleksyn D; Miller J; Gao YR
    PLoS One; 2019; 14(12):e0225410. PubMed ID: 31790435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology.
    Tzoumas S; Ntziachristos V
    Philos Trans A Math Phys Eng Sci; 2017 Nov; 375(2107):. PubMed ID: 29038385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-stage approach for estimating optical parameters in spectral quantitative photoacoustic tomography.
    Suhonen M; Pulkkinen A; Tarvainen T
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):527-542. PubMed ID: 38437444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral-differential-based unmixing for multispectral photoacoustic imaging.
    Hirasawa T; Iwatate RJ; Kamiya M; Okawa S; Fujita M; Urano Y; Ishihara M
    Appl Opt; 2018 Apr; 57(10):2383-2393. PubMed ID: 29714218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging.
    Ephrat P; Albert GC; Roumeliotis MB; Belton M; Prato FS; Carson JJ
    Med Phys; 2010 Apr; 37(4):1619-28. PubMed ID: 20443483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tuning of copolymer-in-oil tissue-mimicking materials for multispectral photoacoustic imaging.
    Khodaverdi A; Cinthio M; Reistad E; Erlöv T; Malmsjö M; Zackrisson S; Reistad N
    Biomed Phys Eng Express; 2024 Jul; ():. PubMed ID: 38959869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-informed photoacoustic discrimination of multiple chromophores by lifetime mapping optically gated responses.
    Islam MS; VanderLaan D; Hickman J; Emelianov S; Dickson RM
    Photoacoustics; 2023 Aug; 32():100529. PubMed ID: 37645258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unmixing multi-spectral photoacoustic sources in human carotid plaques using non-negative independent component analysis.
    Arabul MU; Rutten MCM; Bruneval P; van Sambeek MRHM; van de Vosse FN; Lopata RGP
    Photoacoustics; 2019 Sep; 15():100140. PubMed ID: 31417847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating chromophore distributions from multiwavelength photoacoustic images.
    Cox BT; Arridge SR; Beard PC
    J Opt Soc Am A Opt Image Sci Vis; 2009 Feb; 26(2):443-55. PubMed ID: 19183699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen saturation mapping during reconstructive surgery of human forehead flaps with hyperspectral imaging and spectral unmixing.
    Merdasa A; Berggren J; Tenland K; Stridh M; Hernandez-Palacios J; Gustafsson N; Sheikh R; Malmsjö M
    Microvasc Res; 2023 Nov; 150():104573. PubMed ID: 37390964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.