These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 3560198)

  • 1. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.
    Jauch P; Läuger P
    J Membr Biol; 1986; 94(2):117-27. PubMed ID: 3560198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: I. Tight-seal whole-cell recordings.
    Jauch P; Petersen OH; Läuger P
    J Membr Biol; 1986; 94(2):99-115. PubMed ID: 3560201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the Na+/alanine cotransporter in pancreatic acinar cells.
    Jauch P; Läuger P
    Biochim Biophys Acta; 1988 Apr; 939(2):179-88. PubMed ID: 3355814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system.
    Wilson JJ; Randles J; Kimmich GA
    J Membr Biol; 1998 Oct; 165(3):275-82. PubMed ID: 9767681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):63-79. PubMed ID: 1294062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid specificity of the Na+/alanine cotransporter in pancreatic acinar cells.
    Von Blankenfeld G; Jauch P
    Biochim Biophys Acta; 1989 Apr; 980(3):385-8. PubMed ID: 2540840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model.
    Hilgemann DW; Lu CC
    J Gen Physiol; 1999 Sep; 114(3):459-75. PubMed ID: 10469735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for the kinetic mechanism of sodium-coupled L-alanine transport in LLC-PK1 cells.
    Wilson JJ; Randles J; Kimmich GA
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C49-56. PubMed ID: 8772429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique mechanism of inhibition of Na+-amino acid cotransport during chronic ileal inflammation.
    Sundaram U; Wisel S; Fromkes JJ
    Am J Physiol; 1998 Sep; 275(3):G483-9. PubMed ID: 9724259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording.
    Hoyer J; Gögelein H
    J Gen Physiol; 1991 May; 97(5):1073-94. PubMed ID: 1650810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of Na+-alanine cotransport activates a voltage-dependent conductance in single proximal tubule cells isolated from frog kidney.
    Robson L; Hunter M
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):193-200. PubMed ID: 10226159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.
    Lu CC; Hilgemann DW
    J Gen Physiol; 1999 Sep; 114(3):445-57. PubMed ID: 10469734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of potassium in Chara australis: II. Kinetics of a symport with sodium.
    McCulloch SR; Beilby MJ; Walker NA
    J Membr Biol; 1990 May; 115(2):129-43. PubMed ID: 2355393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GAT1 (GABA:Na+:Cl-) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches.
    Lu CC; Hilgemann DW
    J Gen Physiol; 1999 Sep; 114(3):429-44. PubMed ID: 10469733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea.
    Sellinger M; Ballatori N; Boyer JL
    Toxicol Appl Pharmacol; 1991 Feb; 107(2):369-76. PubMed ID: 1994517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-coupled neutral amino acid cotransporter inhibited by the volatile anesthetic, halothane, in megakaryocytes.
    Shimada H; Tomita Y; Inooka G; Maruyama Y
    Jpn J Physiol; 1995; 45(1):165-76. PubMed ID: 7650850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1.
    Watzke N; Bamberg E; Grewer C
    J Gen Physiol; 2001 Jun; 117(6):547-62. PubMed ID: 11382805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transport properties of the human renal Na(+)- dicarboxylate cotransporter under voltage-clamp conditions.
    Yao X; Pajor AM
    Am J Physiol Renal Physiol; 2000 Jul; 279(1):F54-64. PubMed ID: 10894787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+/amino acid coupling stoichiometry of rheogenic system B0,+ transport in Xenopus oocytes is variable.
    Mackenzie B; Harper AA; Taylor PM; Rennie MJ
    Pflugers Arch; 1994 Jan; 426(1-2):121-8. PubMed ID: 8146015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter.
    Camargo SM; Makrides V; Virkki LV; Forster IC; Verrey F
    Pflugers Arch; 2005 Nov; 451(2):338-48. PubMed ID: 16133263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.