BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 3560198)

  • 1. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.
    Jauch P; Läuger P
    J Membr Biol; 1986; 94(2):117-27. PubMed ID: 3560198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: I. Tight-seal whole-cell recordings.
    Jauch P; Petersen OH; Läuger P
    J Membr Biol; 1986; 94(2):99-115. PubMed ID: 3560201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the Na+/alanine cotransporter in pancreatic acinar cells.
    Jauch P; Läuger P
    Biochim Biophys Acta; 1988 Apr; 939(2):179-88. PubMed ID: 3355814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system.
    Wilson JJ; Randles J; Kimmich GA
    J Membr Biol; 1998 Oct; 165(3):275-82. PubMed ID: 9767681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):63-79. PubMed ID: 1294062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid specificity of the Na+/alanine cotransporter in pancreatic acinar cells.
    Von Blankenfeld G; Jauch P
    Biochim Biophys Acta; 1989 Apr; 980(3):385-8. PubMed ID: 2540840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model.
    Hilgemann DW; Lu CC
    J Gen Physiol; 1999 Sep; 114(3):459-75. PubMed ID: 10469735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for the kinetic mechanism of sodium-coupled L-alanine transport in LLC-PK1 cells.
    Wilson JJ; Randles J; Kimmich GA
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C49-56. PubMed ID: 8772429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique mechanism of inhibition of Na+-amino acid cotransport during chronic ileal inflammation.
    Sundaram U; Wisel S; Fromkes JJ
    Am J Physiol; 1998 Sep; 275(3):G483-9. PubMed ID: 9724259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording.
    Hoyer J; Gögelein H
    J Gen Physiol; 1991 May; 97(5):1073-94. PubMed ID: 1650810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of Na+-alanine cotransport activates a voltage-dependent conductance in single proximal tubule cells isolated from frog kidney.
    Robson L; Hunter M
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):193-200. PubMed ID: 10226159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.
    Lu CC; Hilgemann DW
    J Gen Physiol; 1999 Sep; 114(3):445-57. PubMed ID: 10469734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of potassium in Chara australis: II. Kinetics of a symport with sodium.
    McCulloch SR; Beilby MJ; Walker NA
    J Membr Biol; 1990 May; 115(2):129-43. PubMed ID: 2355393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GAT1 (GABA:Na+:Cl-) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches.
    Lu CC; Hilgemann DW
    J Gen Physiol; 1999 Sep; 114(3):429-44. PubMed ID: 10469733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea.
    Sellinger M; Ballatori N; Boyer JL
    Toxicol Appl Pharmacol; 1991 Feb; 107(2):369-76. PubMed ID: 1994517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-coupled neutral amino acid cotransporter inhibited by the volatile anesthetic, halothane, in megakaryocytes.
    Shimada H; Tomita Y; Inooka G; Maruyama Y
    Jpn J Physiol; 1995; 45(1):165-76. PubMed ID: 7650850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1.
    Watzke N; Bamberg E; Grewer C
    J Gen Physiol; 2001 Jun; 117(6):547-62. PubMed ID: 11382805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transport properties of the human renal Na(+)- dicarboxylate cotransporter under voltage-clamp conditions.
    Yao X; Pajor AM
    Am J Physiol Renal Physiol; 2000 Jul; 279(1):F54-64. PubMed ID: 10894787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+/amino acid coupling stoichiometry of rheogenic system B0,+ transport in Xenopus oocytes is variable.
    Mackenzie B; Harper AA; Taylor PM; Rennie MJ
    Pflugers Arch; 1994 Jan; 426(1-2):121-8. PubMed ID: 8146015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter.
    Camargo SM; Makrides V; Virkki LV; Forster IC; Verrey F
    Pflugers Arch; 2005 Nov; 451(2):338-48. PubMed ID: 16133263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.