These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35602090)

  • 1. Flagellar Motor Transformed: Biophysical Perspectives of the
    Chen J; Nan B
    Front Microbiol; 2022; 13():891694. PubMed ID: 35602090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gliding motility in bacteria: insights from studies of Myxococcus xanthus.
    Spormann AM
    Microbiol Mol Biol Rev; 1999 Sep; 63(3):621-41. PubMed ID: 10477310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus.
    Islam ST; Mignot T
    Semin Cell Dev Biol; 2015 Oct; 46():143-54. PubMed ID: 26520023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modeling of mechanosensitive reversal control in
    Chen Y; Topo EJ; Nan B; Chen J
    Front Microbiol; 2023; 14():1294631. PubMed ID: 38260904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering the mystery of gliding motility in the myxobacteria.
    Nan B; Zusman DR
    Annu Rev Genet; 2011; 45():21-39. PubMed ID: 21910630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force.
    Nan B; Chen J; Neu JC; Berry RM; Oster G; Zusman DR
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2498-503. PubMed ID: 21248229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Observations of an Aperiodic Oscillatory Gliding Behavior in Myxococcus xanthus Using Confocal Interference Reflection Microscopy.
    Rooney LM; Kölln LS; Scrimgeour R; Amos WB; Hoskisson PA; McConnell G
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31996414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA.
    Nan B; Bandaria JN; Guo KY; Fan X; Moghtaderi A; Yildiz A; Zusman DR
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E186-93. PubMed ID: 25550521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories.
    Nan B; Bandaria JN; Moghtaderi A; Sun IH; Yildiz A; Zusman DR
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):E1508-13. PubMed ID: 23576734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces.
    McBride MJ
    Annu Rev Microbiol; 2001; 55():49-75. PubMed ID: 11544349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus.
    Jakobczak B; Keilberg D; Wuichet K; Søgaard-Andersen L
    PLoS Genet; 2015 Jul; 11(7):e1005341. PubMed ID: 26132848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How myxobacteria glide.
    Wolgemuth C; Hoiczyk E; Kaiser D; Oster G
    Curr Biol; 2002 Mar; 12(5):369-77. PubMed ID: 11882287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the function of a versatile class of membrane molecular motors from studies of
    Mignot T; Nöllmann M
    Microb Cell; 2017 Mar; 4(3):98-100. PubMed ID: 28357395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility.
    Fu G; Bandaria JN; Le Gall AV; Fan X; Yildiz A; Mignot T; Zusman DR; Nan B
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2484-2489. PubMed ID: 29463706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gliding motility revisited: how do the myxobacteria move without flagella?
    Mauriello EM; Mignot T; Yang Z; Zusman DR
    Microbiol Mol Biol Rev; 2010 Jun; 74(2):229-49. PubMed ID: 20508248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility.
    Balagam R; Litwin DB; Czerwinski F; Sun M; Kaplan HB; Shaevitz JW; Igoshin OA
    PLoS Comput Biol; 2014 May; 10(5):e1003619. PubMed ID: 24810164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system.
    Sun H; Zusman DR; Shi W
    Curr Biol; 2000 Sep; 10(18):1143-6. PubMed ID: 10996798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence and modular evolution of a novel motility machinery in bacteria.
    Luciano J; Agrebi R; Le Gall AV; Wartel M; Fiegna F; Ducret A; Brochier-Armanet C; Mignot T
    PLoS Genet; 2011 Sep; 7(9):e1002268. PubMed ID: 21931562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of force transmission at bacterial focal adhesion complexes.
    Faure LM; Fiche JB; Espinosa L; Ducret A; Anantharaman V; Luciano J; Lhospice S; Islam ST; Tréguier J; Sotes M; Kuru E; Van Nieuwenhze MS; Brun YV; Théodoly O; Aravind L; Nollmann M; Mignot T
    Nature; 2016 Nov; 539(7630):530-535. PubMed ID: 27749817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili.
    Li Y; Lux R; Pelling AE; Gimzewski JK; Shi W
    Microbiology (Reading); 2005 Feb; 151(Pt 2):353-360. PubMed ID: 15699186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.