These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35602181)

  • 1. Characterization of a 30 µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization.
    Lee BJ; Hsiao K; Lipkowitz G; Samuelsen T; Tate L; DeSimone JM
    Addit Manuf; 2022 Jul; 55():. PubMed ID: 35602181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-digit-micrometer-resolution continuous liquid interface production.
    Hsiao K; Lee BJ; Samuelsen T; Lipkowitz G; Kronenfeld JM; Ilyn D; Shih A; Dulay MT; Tate L; Shaqfeh ESG; DeSimone JM
    Sci Adv; 2022 Nov; 8(46):eabq2846. PubMed ID: 36383664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization.
    Zhao X; Zhao Y; Li MD; Li Z; Peng H; Xie T; Xie X
    Nat Commun; 2021 May; 12(1):2873. PubMed ID: 34001898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injection continuous liquid interface production of 3D objects.
    Lipkowitz G; Samuelsen T; Hsiao K; Lee B; Dulay MT; Coates I; Lin H; Pan W; Toth G; Tate L; Shaqfeh ESG; DeSimone JM
    Sci Adv; 2022 Sep; 8(39):eabq3917. PubMed ID: 36170357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed material for temporary restorations: impact of print layer thickness and post-curing method on degree of conversion.
    Reymus M; Lümkemann N; Stawarczyk B
    Int J Comput Dent; 2019; 22(3):231-237. PubMed ID: 31463487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology.
    Ertugrul I
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32443757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses.
    Somers P; Liang Z; Johnson JE; Boudouris BW; Pan L; Xu X
    Light Sci Appl; 2021 Sep; 10(1):199. PubMed ID: 34561417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing using powder melt extrusion.
    Boyle BM; Xiong PT; Mensch TE; Werder TJ; Miyake GM
    Addit Manuf; 2019 Oct; 29():. PubMed ID: 33907668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical modelling and optimization of print quality and mechanical properties of customized tubular scaffolds fabricated using solvent-based extrusion 3D printing process.
    Kandi R; Pandey PM
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1421-1438. PubMed ID: 34269125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays.
    Mathew E; Pitzanti G; Gomes Dos Santos AL; Lamprou DA
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of additive manufacturing technologies and finish line designs on the trueness and dimensional stability of 3D-printed dies.
    Lai YC; Yang CC; Levon JA; Chu TG; Morton D; Lin WS
    J Prosthodont; 2023 Jul; 32(6):519-526. PubMed ID: 35962924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive manufacturing. Continuous liquid interface production of 3D objects.
    Tumbleston JR; Shirvanyants D; Ermoshkin N; Janusziewicz R; Johnson AR; Kelly D; Chen K; Pinschmidt R; Rolland JP; Ermoshkin A; Samulski ET; DeSimone JM
    Science; 2015 Mar; 347(6228):1349-52. PubMed ID: 25780246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Invisible" Digital Light Processing 3D Printing with Near Infrared Light.
    Stevens LM; Tagnon C; Page ZA
    ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35080842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layerless fabrication with continuous liquid interface production.
    Janusziewicz R; Tumbleston JR; Quintanilla AL; Mecham SJ; DeSimone JM
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11703-11708. PubMed ID: 27671641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing.
    Serex L; Bertsch A; Renaud P
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing.
    Choo S; Jin S; Jung J
    Pharmaceutics; 2022 Mar; 14(4):. PubMed ID: 35456599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A focused simulation-based optimization of print time and material usage with respect to orientation, layer height and support settings for multi-pathological anatomical models in inverted vat photopolymerization 3D printing.
    Ravi P; Chen VCP
    3D Print Med; 2021 Aug; 7(1):23. PubMed ID: 34448082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing.
    Krieger KJ; Bertollo N; Dangol M; Sheridan JT; Lowery MM; O'Cearbhaill ED
    Microsyst Nanoeng; 2019; 5():42. PubMed ID: 31645996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.