These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3560222)

  • 1. Computational studies of the interaction of myoglobin and xenon.
    Tilton RF; Singh UC; Weiner SJ; Connolly ML; Kuntz ID; Kollman PA; Max N; Case DA
    J Mol Biol; 1986 Nov; 192(2):443-56. PubMed ID: 3560222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of nonspecific surface interactions between laser-polarized xenon and myoglobin in solution.
    Rubin SM; Spence MM; Goodson BM; Wemmer DE; Pines A
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9472-5. PubMed ID: 10931956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein collective motions coupled to ligand migration in myoglobin.
    Nishihara Y; Kato S; Hayashi S
    Biophys J; 2010 Apr; 98(8):1649-57. PubMed ID: 20409486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-ligand dynamics. A 96 picosecond simulation of a myoglobin-xenon complex.
    Tilton RF; Singh UC; Kuntz ID; Kollman PA
    J Mol Biol; 1988 Jan; 199(1):195-211. PubMed ID: 3351919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal cavities and ligand passageways in human hemoglobin characterized by molecular dynamics simulations.
    Mouawad L; Maréchal JD; Perahia D
    Biochim Biophys Acta; 2005 Aug; 1724(3):385-93. PubMed ID: 15963643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of xenon on a protein arising from the translational motion of solvent molecules.
    Akiyama R; Karino Y; Obama H; Yoshifuku A
    Phys Chem Chem Phys; 2010 Apr; 12(13):3096-101. PubMed ID: 20237695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of molecular dynamics and free energy perturbation methods to metalloporphyrin-ligand systems II: CO and dioxygen binding to myoglobin.
    Lopez MA; Kollman PA
    Protein Sci; 1993 Nov; 2(11):1975-86. PubMed ID: 8268807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural investigation of pig metmyoglobin by 129Xe NMR spectroscopy.
    Corda M; Era B; Fais A; Casu M
    Biochim Biophys Acta; 2004 Sep; 1674(2):182-92. PubMed ID: 15374622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of anesthetics to proteins: linkage between the sixth-ligand site of heme iron ion and the nonpolar binding sites of myoglobin.
    Keyes M; Lumry R
    Fed Proc; 1968; 27(3):895-7. PubMed ID: 5655014
    [No Abstract]   [Full Text] [Related]  

  • 10. Ligand migration in sperm whale myoglobin.
    Scott EE; Gibson QH
    Biochemistry; 1997 Sep; 36(39):11909-17. PubMed ID: 9305984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A.
    Tilton RF; Kuntz ID; Petsko GA
    Biochemistry; 1984 Jun; 23(13):2849-57. PubMed ID: 6466620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action.
    Trudell JR; Koblin DD; Eger EI
    Anesth Analg; 1998 Aug; 87(2):411-8. PubMed ID: 9706942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.
    Mann G; Hermans J
    J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition with xenon elicits ligand migration and escape pathways in myoglobin.
    Tetreau C; Blouquit Y; Novikov E; Quiniou E; Lavalette D
    Biophys J; 2004 Jan; 86(1 Pt 1):435-47. PubMed ID: 14695286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of zinc and cadmium ions on structure and function of myoglobin.
    Lepeshkevich SV; Dzhagarov BM
    Biochim Biophys Acta; 2009 Jan; 1794(1):103-9. PubMed ID: 18992855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML; Breyer WA; Griswold IJ; Matthews BW
    J Mol Biol; 2000 Sep; 302(4):955-77. PubMed ID: 10993735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern of cavities in globins: the case of human hemoglobin.
    Savino C; Miele AE; Draghi F; Johnson KA; Sciara G; Brunori M; Vallone B
    Biopolymers; 2009 Dec; 91(12):1097-107. PubMed ID: 19365817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geminate rebinding in trehalose-glass embedded myoglobins reveals residue-specific control of intramolecular trajectories.
    Dantsker D; Samuni U; Friedman AJ; Yang M; Ray A; Friedman JM
    J Mol Biol; 2002 Jan; 315(2):239-51. PubMed ID: 11779242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.