These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35602604)

  • 61. Tenascin-C-enriched regeneration-specific extracellular matrix guarantees superior muscle regeneration in Ambystoma mexicanum.
    Ohashi A; Terai S; Furukawa S; Yamamoto S; Kashimoto R; Satoh A
    Dev Biol; 2023 Dec; 504():98-112. PubMed ID: 37778717
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 2D and 3D Echocardiography in the Axolotl (Ambystoma Mexicanum).
    Dittrich A; Thygesen MM; Lauridsen H
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30582577
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Normal development in Ambystoma mexicanum: A complementary staging table for the skull based on Alizarin red S staining.
    Atkins JB; Houle L; Cantelon AS; Maddin HC
    Dev Dyn; 2020 May; 249(5):656-665. PubMed ID: 31930611
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multi-species atlas resolves an axolotl limb development and regeneration paradox.
    Zhong J; Aires R; Tsissios G; Skoufa E; Brandt K; Sandoval-Guzmán T; Aztekin C
    Nat Commun; 2023 Oct; 14(1):6346. PubMed ID: 37816738
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum).
    Fei JF; Lou WP; Knapp D; Murawala P; Gerber T; Taniguchi Y; Nowoshilow S; Khattak S; Tanaka EM
    Nat Protoc; 2018 Dec; 13(12):2908-2943. PubMed ID: 30429597
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Reproducible Spinal Cord Crush Injury in the Regeneration-Permissive Axolotl.
    Walker S; Santos-Ferreira T; Echeverri K
    Methods Mol Biol; 2023; 2636():237-246. PubMed ID: 36881304
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Detailed tail proteomic analysis of axolotl (Ambystoma mexicanum) using an mRNA-seq reference database.
    Demircan T; Keskin I; Dumlu SN; Aytürk N; Avşaroğlu ME; Akgün E; Öztürk G; Baykal AT
    Proteomics; 2017 Jan; 17(1-2):. PubMed ID: 27896924
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Probability of Regenerating a Normal Limb After Bite Injury in the Mexican Axolotl (
    Thompson S; Muzinic L; Muzinic C; Niemiller ML; Voss SR
    Regeneration (Oxf); 2014 Jun; 1(3):27-32. PubMed ID: 25745564
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Repeated removal of developing limb buds permanently reduces appendage size in the highly-regenerative axolotl.
    Bryant DM; Sousounis K; Farkas JE; Bryant S; Thao N; Guzikowski AR; Monaghan JR; Levin M; Whited JL
    Dev Biol; 2017 Apr; 424(1):1-9. PubMed ID: 28235582
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Dynamic Landscapes of Circular RNAs in Axolotl, a Regenerative Medicine Model, with Implications for Early Phase of Limb Regeneration.
    Demircan T; Süzek BE
    OMICS; 2023 Nov; 27(11):526-535. PubMed ID: 37943672
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of tunicamycin on retinoic acid induced respecification of positional values in regenerating limbs of the larval axolotl, Ambystoma mexicanum.
    Johnson KJ; Scadding SR
    Dev Dyn; 1992 Feb; 193(2):185-92. PubMed ID: 1581606
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Creation of chimeric mutant axolotls: a model to study early embryonic heart development in Mexican axolotls.
    Lemanski LF; Meng F; Lemanski SL; Dawson N; Zhang C; Foster D; Li Q; Nakatsugawa M; Zajdel RW; Dube DK; Huang X
    Anat Embryol (Berl); 2001 May; 203(5):335-42. PubMed ID: 11411308
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl.
    Lopez D; Lin L; Monaghan JR; Cogle CR; Bova FJ; Maden M; Scott EW
    Blood; 2014 Aug; 124(8):1232-41. PubMed ID: 24802774
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regeneration of limb joints in the axolotl (Ambystoma mexicanum).
    Lee J; Gardiner DM
    PLoS One; 2012; 7(11):e50615. PubMed ID: 23185640
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl.
    Demircan T; İlhan AE; Aytürk N; Yıldırım B; Öztürk G; Keskin İ
    Acta Histochem; 2016 Sep; 118(7):746-759. PubMed ID: 27436816
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Skin wound healing in axolotls: a scarless process.
    Lévesque M; Villiard E; Roy S
    J Exp Zool B Mol Dev Evol; 2010 Dec; 314(8):684-97. PubMed ID: 20718005
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.
    Ferris DR; Satoh A; Mandefro B; Cummings GM; Gardiner DM; Rugg EL
    Dev Growth Differ; 2010 Oct; 52(8):715-24. PubMed ID: 20874715
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Forever young: Endocrinology of paedomorphosis in the Mexican axolotl (Ambystoma mexicanum).
    De Groef B; Grommen SVH; Darras VM
    Gen Comp Endocrinol; 2018 Sep; 266():194-201. PubMed ID: 29777689
    [TBL] [Abstract][Full Text] [Related]  

  • 79. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration.
    Wu CH; Tsai MH; Ho CC; Chen CY; Lee HS
    BMC Genomics; 2013 Jul; 14():434. PubMed ID: 23815514
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special references to the olfactory organ (author's transl)].
    Richter W; Kranz D
    Z Mikrosk Anat Forsch; 1981; 95(6):883-904. PubMed ID: 7336815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.