These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35603031)

  • 1. Plant pathogenic bacterium can rapidly evolve tolerance to an antimicrobial plant allelochemical.
    Alderley CL; Greenrod STE; Friman VP
    Evol Appl; 2022 May; 15(5):735-750. PubMed ID: 35603031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant pathogenic bacterium Ralstonia solanacearum can rapidly evolve tolerance to antimicrobials produced by Pseudomonas biocontrol bacteria.
    Clough SE; Elphinstone JG; Friman VP
    J Evol Biol; 2024 Feb; 37(2):225-237. PubMed ID: 38290003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phages enhance both phytopathogen density control and rhizosphere microbiome suppressiveness.
    Wang X; Wang S; Huang M; He Y; Guo S; Yang K; Wang N; Sun T; Yang H; Yang T; Xu Y; Shen Q; Friman V-P; Wei Z
    mBio; 2024 Jun; 15(6):e0301623. PubMed ID: 38780276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation.
    Hu P; Hollister EB; Somenahally AC; Hons FM; Gentry TJ
    Front Microbiol; 2014; 5():729. PubMed ID: 25709600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosinolate content and isothiocyanate evolution--two measures of the biofumigation potential of plants.
    Warton B; Matthiessen JN; Shackleton MA
    J Agric Food Chem; 2001 Nov; 49(11):5244-50. PubMed ID: 11714311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco.
    Lowe-Power TM; Jacobs JM; Ailloud F; Fochs B; Prior P; Allen C
    mBio; 2016 Jun; 7(3):. PubMed ID: 27329752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights on the Role of Allyl Isothiocyanate in Controlling the Root Knot Nematode
    Dahlin P; Hallmann J
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32397380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates.
    Siebers M; Rohr T; Ventura M; Schütz V; Thies S; Kovacic F; Jaeger KE; Berg M; Dörmann P; Schulz M
    PLoS One; 2018; 13(7):e0200160. PubMed ID: 29969500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validating Methods To Eradicate Plant-Pathogenic Ralstonia Strains Reveals that Growth
    Hayes MM; Dewberry RJ; Babujee L; Moritz R; Allen C
    Microbiol Spectr; 2022 Dec; 10(6):e0227022. PubMed ID: 36453936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibitory effects of different types of Brassica seed meals on the virulence of Ralstonia solanacearum.
    Peng J; Liu H; Shen M; Chen R; Li J; Dong Y
    Pest Manag Sci; 2021 Nov; 77(11):5129-5138. PubMed ID: 34251090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration- and time-dependent effects of isothiocyanates produced from Brassicaceae shoot tissues on the pea root rot pathogen Aphanomyces euteiches.
    Hossain S; Bergkvist G; Berglund K; Glinwood R; Kabouw P; Mårtensson A; Persson P
    J Agric Food Chem; 2014 May; 62(20):4584-91. PubMed ID: 24824814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced suppression of soil-borne phytopathogenic bacteria Ralstonia solanacearum in soil and promotion of tomato plant growth by synergetic effect of green synthesized nanoparticles and plant extract.
    Guo Y; Khan RAA; Xiong Y; Fan Z
    J Appl Microbiol; 2022 May; 132(5):3694-3704. PubMed ID: 35064994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs.
    Wang J; Raza W; Jiang G; Yi Z; Fields B; Greenrod S; Friman VP; Jousset A; Shen Q; Wei Z
    ISME J; 2023 Mar; 17(3):443-452. PubMed ID: 36635489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining in vitro and in vivo screening to identify efficient Pseudomonas biocontrol strains against the phytopathogenic bacterium Ralstonia solanacearum.
    Clough SE; Jousset A; Elphinstone JG; Friman VP
    Microbiologyopen; 2022 Apr; 11(2):e1283. PubMed ID: 35478286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NorA, HmpX, and NorB Cooperate to Reduce NO Toxicity during Denitrification and Plant Pathogenesis in
    Truchon AN; Hendrich CG; Bigott AF; Dalsing BL; Allen C
    Microbiol Spectr; 2022 Apr; 10(2):e0026422. PubMed ID: 35377234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions.
    Wei Z; Huang J; Yang T; Jousset A; Xu Y; Shen Q; Friman VP
    J Appl Ecol; 2017 Oct; 54(5):1440-1448. PubMed ID: 29081539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allelopathic bacteria and their impact on higher plants.
    Barazani O; Friedman J
    Crit Rev Microbiol; 2001; 27(1):41-55. PubMed ID: 11305367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.
    Spraker JE; Wiemann P; Baccile JA; Venkatesh N; Schumacher J; Schroeder FC; Sanchez LM; Keller NP
    mBio; 2018 May; 9(3):. PubMed ID: 29789359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trojan Horse virus delivering CRISPR-AsCas12f1 controls plant bacterial wilt caused by
    Peng S; Xu Y; Qu H; Nong F; Shu F; Yuan G; Ruan L; Zheng D
    mBio; 2024 Aug; 15(8):e0061924. PubMed ID: 39012150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol of the Major Plant Pathogen
    Álvarez B; López MM; Biosca EG
    Front Microbiol; 2019; 10():2813. PubMed ID: 31866979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.