BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 35603132)

  • 1. Cross-Frequency Slow Oscillation-Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model.
    Jajcay N; Cakan C; Obermayer K
    Front Comput Neurosci; 2022; 16():769860. PubMed ID: 35603132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential thalamocortical interactions in slow and fast spindle generation: A computational model.
    Mushtaq M; Marshall L; Bazhenov M; Mölle M; Martinetz T
    PLoS One; 2022; 17(12):e0277772. PubMed ID: 36508417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.
    Latchoumane CV; Ngo HV; Born J; Shin HS
    Neuron; 2017 Jul; 95(2):424-435.e6. PubMed ID: 28689981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus.
    Fan D; Wang Q; Su J; Xi H
    J Comput Neurosci; 2017 Dec; 43(3):203-225. PubMed ID: 28939929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study.
    Mushtaq M; Marshall L; Ul Haq R; Martinetz T
    PLoS One; 2024; 19(6):e0306218. PubMed ID: 38924001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow spindles are associated with cortical high frequency activity.
    Hashemi NS; Dehnavi F; Moghimi S; Ghorbani M
    Neuroimage; 2019 Apr; 189():71-84. PubMed ID: 30639838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Organization and Cross-Frequency Coupling of Sleep Spindles in Primate Cerebral Cortex.
    Takeuchi S; Murai R; Shimazu H; Isomura Y; Mima T; Tsujimoto T
    Sleep; 2016 Sep; 39(9):1719-35. PubMed ID: 27397568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations.
    Sritharan SY; Contreras-Hernández E; Richardson AG; Lucas TH
    J Neurophysiol; 2020 Jan; 123(1):300-307. PubMed ID: 31800329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential.
    Marshall L; Mölle M; Born J
    Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
    Mölle M; Eschenko O; Gais S; Sara SJ; Born J
    Eur J Neurosci; 2009 Mar; 29(5):1071-81. PubMed ID: 19245368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRPM4 Conductances in Thalamic Reticular Nucleus Neurons Generate Persistent Firing during Slow Oscillations.
    O'Malley JJ; Seibt F; Chin J; Beierlein M
    J Neurosci; 2020 Jun; 40(25):4813-4823. PubMed ID: 32414784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamic epileptic spikes disrupt sleep spindles in patients with epileptic encephalopathy.
    Wodeyar A; Chinappen D; Mylonas D; Baxter B; Manoach DS; Eden UT; Kramer MA; Chu CJ
    Brain; 2024 Apr; ():. PubMed ID: 38650060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.