These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35603132)

  • 21. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Memory ability and retention performance relate differentially to sleep depth and spindle type.
    Dehnavi F; Koo-Poeggel PC; Ghorbani M; Marshall L
    iScience; 2023 Nov; 26(11):108154. PubMed ID: 37876817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex.
    Bernhard H; Schaper FLWVJ; Janssen MLF; Gommer ED; Jansma BM; Van Kranen-Mastenbroek V; Rouhl RPW; de Weerd P; Reithler J; Roberts MJ;
    Neuroimage; 2022 Nov; 263():119625. PubMed ID: 36103955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dyscoordination of non-rapid eye movement sleep oscillations in autism spectrum disorder.
    Mylonas D; Machado S; Larson O; Patel R; Cox R; Vangel M; Maski K; Stickgold R; Manoach DS
    Sleep; 2022 Mar; 45(3):. PubMed ID: 35022792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model.
    Soplata AE; Adam E; Brown EN; Purdon PL; McCarthy MM; Kopell N
    J Neurophysiol; 2023 Jul; 130(1):86-103. PubMed ID: 37314079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The timing of sleep spindles is modulated by the respiratory cycle in humans.
    Ghibaudo V; Juventin M; Buonviso N; Peter-Derex L
    Clin Neurophysiol; 2024 Jul; ():. PubMed ID: 39030100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    J Neurosci; 2002 Oct; 22(19):8691-704. PubMed ID: 12351744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
    Yang M; Logothetis NK; Eschenko O
    J Neurosci; 2019 Jan; 39(3):434-444. PubMed ID: 30459228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Propagation of spindle waves in a thalamic slice model.
    Golomb D; Wang XJ; Rinzel J
    J Neurophysiol; 1996 Feb; 75(2):750-69. PubMed ID: 8714650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles.
    Fan D; Liao F; Wang Q
    Chaos; 2017 Jul; 27(7):073103. PubMed ID: 28764392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A population-based model of the nonlinear dynamics of the thalamocortical feedback network displays intrinsic oscillations in the spindling (7-14 Hz) range.
    Yousif NA; Denham M
    Eur J Neurosci; 2005 Dec; 22(12):3179-87. PubMed ID: 16367784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow-wave activity preceding the onset of 10-15-Hz sleep spindles and 5-9-Hz oscillations in electroencephalograms in rats with and without absence seizures.
    Sitnikova E; Grubov V; Hramov AE
    J Sleep Res; 2020 Dec; 29(6):e12927. PubMed ID: 31578791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans.
    Niknazar M; Krishnan GP; Bazhenov M; Mednick SC
    PLoS One; 2015; 10(12):e0144720. PubMed ID: 26671283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale structure and individual fingerprints of locally coupled sleep oscillations.
    Cox R; Mylonas DS; Manoach DS; Stickgold R
    Sleep; 2018 Dec; 41(12):. PubMed ID: 30184179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.
    Burikov AA; Bereshpolova YuI
    Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sleep spindles in primates: Modeling the effects of distinct laminar thalamocortical connectivity in core, matrix, and reticular thalamic circuits.
    Yazdanbakhsh A; Barbas H; Zikopoulos B
    Netw Neurosci; 2023; 7(2):743-768. PubMed ID: 37397882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.