These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35603373)

  • 21. Deep Recurrent Neural Networks for Human Activity Recognition.
    Murad A; Pyun JY
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29113103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognition of sports and daily activities through deep learning and convolutional block attention.
    Mekruksavanich S; Phaphan W; Hnoohom N; Jitpattanakul A
    PeerJ Comput Sci; 2024; 10():e2100. PubMed ID: 38855220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wireless body area sensor networks based human activity recognition using deep learning.
    El-Adawi E; Essa E; Handosa M; Elmougy S
    Sci Rep; 2024 Feb; 14(1):2702. PubMed ID: 38302545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Network with Attention Mechanism for Detection and Location of Myocardial Infarction Based on 12-Lead Electrocardiogram Signals.
    Fu L; Lu B; Nie B; Peng Z; Liu H; Pi X
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32074979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition.
    Abbaspour S; Fotouhi F; Sedaghatbaf A; Fotouhi H; Vahabi M; Linden M
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning-Enhanced Internet of Things for Activity Recognition in Post-Stroke Rehabilitation.
    Jin F; Zou M; Peng X; Lei H; Ren Y
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):3851-3859. PubMed ID: 37963004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.
    Soro A; Brunner G; Tanner S; Wattenhofer R
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Learning in the Recognition of Activities of Daily Living Using Smartwatch Data.
    Cavalcante AF; Kunst VHL; Chaves TM; de Souza JDT; Ribeiro IM; Quintino JP; da Silva FQB; Santos ALM; Teichrieb V; da Gama AEF
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human Action Recognition and Note Recognition: A Deep Learning Approach Using STA-GCN.
    Enkhbat A; Shih TK; Cheewaprakobkit P
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human Activity Recognition Based on Residual Network and BiLSTM.
    Li Y; Wang L
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human Activity Prediction Based on Forecasted IMU Activity Signals by Sequence-to-Sequence Deep Neural Networks.
    Jaramillo IE; Chola C; Jeong JG; Oh JH; Jung H; Lee JH; Lee WH; Kim TS
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid RNN-ANN Based Deep Physiological Network for Pain Recognition.
    Wang R; Xu K; Feng H; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5584-5587. PubMed ID: 33019243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Building robust models for Human Activity Recognition from raw accelerometers data using Gated Recurrent Units and Long Short Term Memory Neural Networks.
    Okai J; Paraschiakos S; Beekman M; Knobbe A; de Sa CR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2486-2491. PubMed ID: 31946402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A CNN-CBAM-BIGRU model for protein function prediction.
    Sharma L; Deepak A; Ranjan A; Krishnasamy G
    Stat Appl Genet Mol Biol; 2024 Jan; 23(1):. PubMed ID: 38943434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep-HAR: an ensemble deep learning model for recognizing the simple, complex, and heterogeneous human activities.
    Kumar P; Suresh S
    Multimed Tools Appl; 2023 Feb; ():1-28. PubMed ID: 36851913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition.
    Bento N; Rebelo J; Barandas M; Carreiro AV; Campagner A; Cabitza F; Gamboa H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.