These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35603373)

  • 41. STC-NLSTMNet: An Improved Human Activity Recognition Method Using Convolutional Neural Network with NLSTM from WiFi CSI.
    Islam MS; Jannat MKA; Hossain MN; Kim WS; Lee SW; Yang SH
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic Edge Convolutional Neural Network for Skeleton-Based Human Action Recognition.
    Tasnim N; Baek JH
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recognition of Fine-Grained Walking Patterns Using a Smartwatch with Deep Attentive Neural Networks.
    Kim H; Kim HJ; Park J; Ryu JK; Kim SC
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Margin-Based Deep Learning Networks for Human Activity Recognition.
    Lv T; Wang X; Jin L; Xiao Y; Song M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feature fusion using deep learning for smartphone based human activity recognition.
    Thakur D; Biswas S
    Int J Inf Technol; 2021; 13(4):1615-1624. PubMed ID: 34151135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Position-Aware Indoor Human Activity Recognition Using Multisensors Embedded in Smartphones.
    Wang X; Wang Y; Wu J
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of Human Activities Based on a New Structure of Skeleton Features and Deep Learning Model.
    Jaouedi N; Perales FJ; Buades JM; Boujnah N; Bouhlel MS
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep Learning for Classifying Physical Activities from Accelerometer Data.
    Nunavath V; Johansen S; Johannessen TS; Jiao L; Hansen BH; Berntsen S; Goodwin M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Energy-Efficient Method for Human Activity Recognition with Segment-Level Change Detection and Deep Learning.
    Jeong CY; Kim M
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recognizing Human Daily Activity Using Social Media Sensors and Deep Learning.
    Gong J; Li R; Yao H; Kang X; Li S
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cross-Attention Enhanced Pyramid Multi-Scale Networks for Sensor-Based Human Activity Recognition.
    Pang H; Zheng L; Fang H
    IEEE J Biomed Health Inform; 2024 May; 28(5):2733-2744. PubMed ID: 38483804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Health Recognition Algorithm for Sports Training Based on Bi-GRU Neural Networks.
    Nie Q; Li Y; Xiong WY; Xu W
    J Healthc Eng; 2021; 2021():1579746. PubMed ID: 34336149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Deep Learning-Based Semantic Segmentation Model Using MCNN and Attention Layer for Human Activity Recognition.
    Lee SH; Lee DW; Kim MS
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data.
    Amjad F; Khan MH; Nisar MA; Farid MS; Grzegorzek M
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.
    Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On-Device Deep Learning Inference for Efficient Activity Data Collection.
    Mairittha N; Mairittha T; Inoue S
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31387314
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition.
    Thapa K; Abdullah Al ZM; Lamichhane B; Yang SH
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-Way Feature Extraction for Speech Emotion Recognition Using Deep Learning.
    Aggarwal A; Srivastava A; Agarwal A; Chahal N; Singh D; Alnuaim AA; Alhadlaq A; Lee HN
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.