These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35603520)

  • 1. Effect of aortic cannulation depth on air emboli transport during cardiopulmonary bypass: A computational study.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2023 Jul; 38(5):993-1001. PubMed ID: 35603520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Trendelenburg position effectiveness by varying cardiopulmonary bypass flow.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2023 Sep; 38(6):1213-1221. PubMed ID: 35703549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aortic cannula orientation and flow impacts embolic trajectories: computational cardiopulmonary bypass.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2020 Jul; 35(5):409-416. PubMed ID: 31814525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased cerebral emboli during distal aortic arch cannulation: a randomized clinical trial.
    Borger MA; Taylor RL; Weisel RD; Kulkarni G; Benaroia M; Rao V; Cohen G; Fedorko L; Feindel CM
    J Thorac Cardiovasc Surg; 1999 Oct; 118(4):740-5. PubMed ID: 10504642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.
    Piskin S; Ündar A; Pekkan K
    Artif Organs; 2015 Oct; 39(10):E164-75. PubMed ID: 25940836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral emboli during cardiopulmonary bypass: effect of perfusionist interventions and aortic cannulas.
    Borger MA; Feindel CM
    J Extra Corpor Technol; 2002 Mar; 34(1):29-33. PubMed ID: 11911626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aortic outflow cannula tip design and orientation impacts cerebral perfusion during pediatric cardiopulmonary bypass procedures.
    Menon PG; Antaki JF; Undar A; Pekkan K
    Ann Biomed Eng; 2013 Dec; 41(12):2588-602. PubMed ID: 23817768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual air in the venous cannula increases cerebral embolization at the onset of cardiopulmonary bypass.
    Rodriguez RA; Rubens F; Belway D; Nathan HJ
    Eur J Cardiothorac Surg; 2006 Feb; 29(2):175-80. PubMed ID: 16376562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of risks for cerebral embolism associated with the hemodynamics of cardiopulmonary bypass cannula: a numerical model.
    Avrahami I; Dilmoney B; Azuri A; Brand M; Cohen O; Shani L; Nir RR; Bolotin G
    Artif Organs; 2013 Oct; 37(10):857-65. PubMed ID: 24138494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cannula length on aortic arch flow: protection of the atheromatous aortic arch.
    Grossi EA; Kanchuger MS; Schwartz DS; McLoughlin DE; LeBoutillier M; Ribakove GH; Marschall KE; Galloway AC; Colvin SB
    Ann Thorac Surg; 1995 Mar; 59(3):710-2. PubMed ID: 7887717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators.
    Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB
    Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axillary artery cannulation for cardiopulmonary bypass reduces cerebral microemboli.
    Hedayati N; Sherwood JT; Schomisch SJ; Carino JL; Markowitz AH
    J Thorac Cardiovasc Surg; 2004 Sep; 128(3):386-90. PubMed ID: 15354096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs.
    Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS
    Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions.
    Taylor RL; Borger MA; Weisel RD; Fedorko L; Feindel CM
    Ann Thorac Surg; 1999 Jul; 68(1):89-93. PubMed ID: 10421121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass?
    Jones TJ; Deal DD; Vernon JC; Blackburn N; Stump DA
    Ann Thorac Surg; 2002 Dec; 74(6):2132-7. PubMed ID: 12643407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aortic cannula characteristics and blood velocity on transcranial doppler-detected microemboli during cardiopulmonary bypass.
    Benaroia M; Baker AJ; Mazer CD; Errett L
    J Cardiothorac Vasc Anesth; 1998 Jun; 12(3):266-9. PubMed ID: 9636905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooling gradients and formation of gaseous microemboli with cardiopulmonary bypass: an echocardiographic study.
    Geissler HJ; Allen SJ; Mehlhorn U; Davis KL; de Vivie ER; Kurusz M; Butler BD
    Ann Thorac Surg; 1997 Jul; 64(1):100-4. PubMed ID: 9236342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.