These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35603544)

  • 1. Examining organic acid production potential and growth-coupled strategies in Issatchenkia orientalis using constraint-based modeling.
    Suthers PF; Maranas CD
    Biotechnol Prog; 2022 Sep; 38(5):e3276. PubMed ID: 35603544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Buffering system for Cost-Effective production of lactic acid from glucose and xylose using Acid-Tolerant Issatchenkia orientalis.
    Lee YG; Kang NK; Kim C; Tran VG; Cao M; Yoshikuni Y; Zhao H; Jin YS
    Bioresour Technol; 2024 May; 399():130641. PubMed ID: 38552861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cas9-Based Metabolic Engineering of
    Lee YG; Kim C; Kuanyshev N; Kang NK; Fatma Z; Wu ZY; Cheng MH; Singh V; Yoshikuni Y; Zhao H; Jin YS
    J Agric Food Chem; 2022 Sep; 70(38):12085-12094. PubMed ID: 36103687
    [No Abstract]   [Full Text] [Related]  

  • 4. Genome-scale metabolic reconstruction of the non-model yeast
    Suthers PF; Dinh HV; Fatma Z; Shen Y; Chan SHJ; Rabinowitz JD; Zhao H; Maranas CD
    Metab Eng Commun; 2020 Dec; 11():e00148. PubMed ID: 33134082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetic toolbox for metabolic engineering of Issatchenkia orientalis.
    Cao M; Fatma Z; Song X; Hsieh PH; Tran VG; Lyon WL; Sayadi M; Shao Z; Yoshikuni Y; Zhao H
    Metab Eng; 2020 May; 59():87-97. PubMed ID: 32007615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
    Guo W; Sheng J; Zhao H; Feng X
    Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IoGAS1, a GPI-Anchored Protein Derived from Issatchenkia orientalis, Confers Tolerance of Saccharomyces cerevisiae to Multiple Acids.
    Wada K; Fujii T; Akita H; Matsushika A
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1349-1359. PubMed ID: 31768892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae.
    Kobayashi J; Sasaki D; Bamba T; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1243-1254. PubMed ID: 30448906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin A Production by Engineered
    Sun L; Kwak S; Jin YS
    ACS Synth Biol; 2019 Sep; 8(9):2131-2140. PubMed ID: 31374167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biofuels and chemicals from xylose using native and engineered yeast strains.
    Kwak S; Jo JH; Yun EJ; Jin YS; Seo JH
    Biotechnol Adv; 2019; 37(2):271-283. PubMed ID: 30553928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting Issatchenkia orientalis SD108 for succinic acid production.
    Xiao H; Shao Z; Jiang Y; Dole S; Zhao H
    Microb Cell Fact; 2014 Aug; 13():121. PubMed ID: 25159171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose.
    Kodama S; Nakanishi H; Thalagala TA; Isono N; Hisamatsu M
    J Biosci Bioeng; 2013 May; 115(5):557-61. PubMed ID: 23273910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.