These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35603859)

  • 21. Control one-dimensional length of rectangular pore on graphene membrane for better desalination performance.
    Chen S; Ding J; Li Q; He D; Liu Y; Wang L; Lyu Q; Wang M
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35263720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of temperature on the coupling transport of water and ions through a carbon nanotube in an electric field.
    Salman S; Zhao Y; Zhang X; Su J
    J Chem Phys; 2020 Nov; 153(18):184503. PubMed ID: 33187400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concentration-gradient-dependent ion current rectification in charged conical nanopores.
    Cao L; Guo W; Wang Y; Jiang L
    Langmuir; 2012 Jan; 28(4):2194-9. PubMed ID: 22148901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electropumping Phenomenon in Modified Carbon Nanotubes.
    Ding C; Zhao Y; Su J
    Langmuir; 2021 Oct; 37(42):12318-12326. PubMed ID: 34644087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of temperature gradients on charge transport in asymmetric nanochannels.
    Benneker AM; Wendt HD; Lammertink RGH; Wood JA
    Phys Chem Chem Phys; 2017 Oct; 19(41):28232-28238. PubMed ID: 29027561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Ion Rejection in Carbon Nanotubes by a Lateral Electric Field.
    Zhang X; Li S; Su J
    Langmuir; 2022 Aug; 38(32):10065-10074. PubMed ID: 35921520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seawater desalination using pillared graphene as a novel nano-membrane in reverse osmosis process: nonequilibrium MD simulation study.
    Mahdizadeh SJ; Goharshadi EK; Akhlamadi G
    Phys Chem Chem Phys; 2018 Aug; 20(34):22241-22248. PubMed ID: 30118119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture.
    Chen L; Tu B; Lu X; Li F; Jiang L; Antonietti M; Xiao K
    Nat Commun; 2021 Jul; 12(1):4650. PubMed ID: 34330921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient water desalination through mono and bilayer carbon nitride nanosheet membranes: Insights from molecular dynamics simulation.
    Karimzadeh N; Azamat J; Erfan-Niya H
    J Mol Graph Model; 2022 Jan; 110():108059. PubMed ID: 34736058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial Ions Sieving for Ultrafast and Complete Desalination through 2D Nanochannel Defined Graphene Composite Membranes.
    Gong D; Yin Y; Chen H; Guo B; Wu P; Wang Y; Yang Y; Li Z; He Y; Zeng G
    ACS Nano; 2021 Jun; 15(6):9871-9881. PubMed ID: 34115473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical Mechanism of Ion and Water Molecular Transport through Angstrom-Scale Graphene Derivatives Channels: From Atomic Model to Solid-Liquid Interaction.
    Fan L
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of Multi-Layer Graphene Membrane with Descending Pore Size for 100% Water Desalination by Simulation Using ReaxFF.
    Ibrahim Q; Akbarzadeh R; Gharbia SS; Ndungu PG
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of channel geometry on ion-concentration polarization-based preconcentration and desalination.
    Kovář P; Tichý D; Slouka Z
    Biomicrofluidics; 2019 Nov; 13(6):064102. PubMed ID: 31700561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlations in Charged Multipore Systems: Implications for Enhancing Selectivity and Permeability in Nanoporous Membranes.
    Shoemaker BA; Khalifa O; Haji-Akbari A
    ACS Nano; 2024 Jan; 18(2):1420-1431. PubMed ID: 38176076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ozark Graphene Nanopore for Efficient Water Desalination.
    Cao Z; Markey G; Barati Farimani A
    J Phys Chem B; 2021 Oct; 125(40):11256-11263. PubMed ID: 34591487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination.
    Thomas M; Corry B
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric-Field-Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination.
    Wen Q; Jia P; Cao L; Li J; Quan D; Wang L; Zhang Y; Lu D; Jiang L; Guo W
    Adv Mater; 2020 Apr; 32(16):e1903954. PubMed ID: 32115802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultra-high permeable phenine nanotube membranes for water desalination.
    Naskar S; Sahoo AK; Moid M; Maiti PK
    Phys Chem Chem Phys; 2022 May; 24(18):11196-11205. PubMed ID: 35481472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.
    Raju M; Govindaraju PB; van Duin ACT; Ihme M
    Nanoscale; 2018 Feb; 10(8):3969-3980. PubMed ID: 29424378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels.
    Porter CJ; Werber JR; Zhong M; Wilson CJ; Elimelech M
    ACS Nano; 2020 Sep; 14(9):10894-10916. PubMed ID: 32886487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.