BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 35604077)

  • 1. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iDNA-ABT: advanced deep learning model for detecting DNA methylation with adaptive features and transductive information maximization.
    Yu Y; He W; Jin J; Xiao G; Cui L; Zeng R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4603-4610. PubMed ID: 34601568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning.
    Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues.
    Zhang B; Hou Z; Yang Y; Wong KC; Zhu H; Li X
    Commun Biol; 2024 Jun; 7(1):679. PubMed ID: 38830995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PD-BertEDL: An Ensemble Deep Learning Method Using BERT and Multivariate Representation to Predict Peptide Detectability.
    Wang H; Wang J; Feng Z; Li Y; Zhao H
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BERT4Bitter: a bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides.
    Charoenkwan P; Nantasenamat C; Hasan MM; Manavalan B; Shoombuatong W
    Bioinformatics; 2021 Sep; 37(17):2556-2562. PubMed ID: 33638635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images.
    Wang F; Wei L
    Bioinformatics; 2022 Apr; 38(9):2602-2611. PubMed ID: 35212728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning.
    Wei L; Zhou C; Su R; Zou Q
    Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProteinBERT: a universal deep-learning model of protein sequence and function.
    Brandes N; Ofer D; Peleg Y; Rappoport N; Linial M
    Bioinformatics; 2022 Apr; 38(8):2102-2110. PubMed ID: 35020807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only.
    Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides.
    Li Z; Jin J; Wang Y; Long W; Ding Y; Hu H; Wei L
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36897030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of RNA-protein interactions using a nucleotide language model.
    Yamada K; Hamada M
    Bioinform Adv; 2022; 2(1):vbac023. PubMed ID: 36699410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PepCNN deep learning tool for predicting peptide binding residues in proteins using sequence, structural, and language model features.
    Chandra A; Sharma A; Dehzangi I; Tsunoda T; Sattar A
    Sci Rep; 2023 Nov; 13(1):20882. PubMed ID: 38016996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E2EATP: Fast and High-Accuracy Protein-ATP Binding Residue Prediction via Protein Language Model Embedding.
    Rao B; Yu X; Bai J; Hu J
    J Chem Inf Model; 2024 Jan; 64(1):289-300. PubMed ID: 38127815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PepFormer: End-to-End Transformer-Based Siamese Network to Predict and Enhance Peptide Detectability Based on Sequence Only.
    Cheng H; Rao B; Liu L; Cui L; Xiao G; Su R; Wei L
    Anal Chem; 2021 Apr; 93(16):6481-6490. PubMed ID: 33843206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepCellEss: cell line-specific essential protein prediction with attention-based interpretable deep learning.
    Li Y; Zeng M; Zhang F; Wu FX; Li M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36458923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AttentionDTA: Drug-Target Binding Affinity Prediction by Sequence-Based Deep Learning With Attention Mechanism.
    Zhao Q; Duan G; Yang M; Cheng Z; Li Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):852-863. PubMed ID: 35471889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.