BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 35604077)

  • 41. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.
    Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H
    J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences.
    Chen W; Chen G; Zhao L; Chen CY
    J Phys Chem A; 2021 Jul; 125(25):5633-5642. PubMed ID: 34142824
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome.
    Ji Y; Zhou Z; Liu H; Davuluri RV
    Bioinformatics; 2021 Aug; 37(15):2112-2120. PubMed ID: 33538820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MICER: a pre-trained encoder-decoder architecture for molecular image captioning.
    Yi J; Wu C; Zhang X; Xiao X; Qiu Y; Zhao W; Hou T; Cao D
    Bioinformatics; 2022 Sep; 38(19):4562-4572. PubMed ID: 35929794
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of bacteriophage genome sequences with representation learning.
    Bai Z; Zhang YZ; Miyano S; Yamaguchi R; Fujimoto K; Uematsu S; Imoto S
    Bioinformatics; 2022 Sep; 38(18):4264-4270. PubMed ID: 35920769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BERTrand-peptide:TCR binding prediction using Bidirectional Encoder Representations from Transformers augmented with random TCR pairing.
    Myronov A; Mazzocco G; Król P; Plewczynski D
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37535685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ProtTrans and multi-window scanning convolutional neural networks for the prediction of protein-peptide interaction sites.
    Le VT; Zhan ZJ; Vu TT; Malik MS; Ou YY
    J Mol Graph Model; 2024 Jul; 130():108777. PubMed ID: 38642500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DP-site: A dual deep learning-based method for protein-peptide interaction site prediction.
    Shafiee S; Fathi A; Taherzadeh G
    Methods; 2024 Jun; 229():17-29. PubMed ID: 38871095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning.
    Lin S; Chen W; Chen G; Zhou S; Wei DQ; Xiong Y
    J Cheminform; 2022 Nov; 14(1):81. PubMed ID: 36380384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism.
    Zhao Q; Zhao H; Zheng K; Wang J
    Bioinformatics; 2022 Jan; 38(3):655-662. PubMed ID: 34664614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BERT-Promoter: An improved sequence-based predictor of DNA promoter using BERT pre-trained model and SHAP feature selection.
    Le NQK; Ho QT; Nguyen VN; Chang JS
    Comput Biol Chem; 2022 Aug; 99():107732. PubMed ID: 35863177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NCBRPred: predicting nucleic acid binding residues in proteins based on multilabel learning.
    Zhang J; Chen Q; Liu B
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454744
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MetaAc4C: A multi-module deep learning framework for accurate prediction of N4-acetylcytidine sites based on pre-trained bidirectional encoder representation and generative adversarial networks.
    Li Z; Jin B; Fang J
    Genomics; 2024 Jan; 116(1):110749. PubMed ID: 38008265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports.
    Bressem KK; Adams LC; Gaudin RA; Tröltzsch D; Hamm B; Makowski MR; Schüle CY; Vahldiek JL; Niehues SM
    Bioinformatics; 2021 Jan; 36(21):5255-5261. PubMed ID: 32702106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures.
    Xie X; Valiente PA; Kim PM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36651657
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks.
    Karimi M; Wu D; Wang Z; Shen Y
    Bioinformatics; 2019 Sep; 35(18):3329-3338. PubMed ID: 30768156
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AcrNET: predicting anti-CRISPR with deep learning.
    Li Y; Wei Y; Xu S; Tan Q; Zong L; Wang J; Wang Y; Chen J; Hong L; Li Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.