These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 35604077)

  • 61. AcrNET: predicting anti-CRISPR with deep learning.
    Li Y; Wei Y; Xu S; Tan Q; Zong L; Wang J; Wang Y; Chen J; Hong L; Li Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084259
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Deep learning of protein sequence design of protein-protein interactions.
    Syrlybaeva R; Strauch EM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36377772
    [TBL] [Abstract][Full Text] [Related]  

  • 63. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhancing the prediction of disease-gene associations with multimodal deep learning.
    Luo P; Li Y; Tian LP; Wu FX
    Bioinformatics; 2019 Oct; 35(19):3735-3742. PubMed ID: 30825303
    [TBL] [Abstract][Full Text] [Related]  

  • 65. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prediction of protein-ATP binding residues using multi-view feature learning via contextual-based co-attention network.
    Wu JS; Liu Y; Ge F; Yu DJ
    Comput Biol Med; 2024 Apr; 172():108227. PubMed ID: 38460308
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MolFeSCue: enhancing molecular property prediction in data-limited and imbalanced contexts using few-shot and contrastive learning.
    Zhang R; Wu C; Yang Q; Liu C; Wang Y; Li K; Huang L; Zhou F
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38426310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 69. SPPPred: Sequence-Based Protein-Peptide Binding Residue Prediction Using Genetic Programming and Ensemble Learning.
    Shafiee S; Fathi A; Taherzadeh G
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2029-2040. PubMed ID: 37015594
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multimodal contrastive representation learning for drug-target binding affinity prediction.
    Zhang L; Ouyang C; Liu Y; Liao Y; Gao Z
    Methods; 2023 Dec; 220():126-133. PubMed ID: 37952703
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A multimodal deep learning framework for predicting drug-drug interaction events.
    Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S
    Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508
    [TBL] [Abstract][Full Text] [Related]  

  • 72. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences.
    Chen Z; Zhao P; Li F; Leier A; Marquez-Lago TT; Wang Y; Webb GI; Smith AI; Daly RJ; Chou KC; Song J
    Bioinformatics; 2018 Jul; 34(14):2499-2502. PubMed ID: 29528364
    [TBL] [Abstract][Full Text] [Related]  

  • 73. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
    Agarwal A; Chen L
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179
    [TBL] [Abstract][Full Text] [Related]  

  • 74. JEDI: circular RNA prediction based on junction encoders and deep interaction among splice sites.
    Jiang JY; Ju CJ; Hao J; Chen M; Wang W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i289-i298. PubMed ID: 34252942
    [TBL] [Abstract][Full Text] [Related]  

  • 75. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure.
    Yan K; Lv H; Guo Y; Peng W; Liu B
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning.
    Li J; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y
    Bioinformatics; 2022 Jan; 38(4):1110-1117. PubMed ID: 34849593
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Deep2Pep: A deep learning method in multi-label classification of bioactive peptide.
    Chen L; Hu Z; Rong Y; Lou B
    Comput Biol Chem; 2024 Apr; 109():108021. PubMed ID: 38308955
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation.
    Zhang Z; Zhu L; Yu P
    JMIR Med Inform; 2020 May; 8(5):e17637. PubMed ID: 32364514
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CoraL: interpretable contrastive meta-learning for the prediction of cancer-associated ncRNA-encoded small peptides.
    Li Z; Jin J; He W; Long W; Yu H; Gao X; Nakai K; Zou Q; Wei L
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861173
    [TBL] [Abstract][Full Text] [Related]  

  • 80. FAD-BERT: Improved prediction of FAD binding sites using pre-training of deep bidirectional transformers.
    Ho QT; Nguyen TT; Khanh Le NQ; Ou YY
    Comput Biol Med; 2021 Apr; 131():104258. PubMed ID: 33601085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.