These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35604083)

  • 1. PeakBot: machine-learning-based chromatographic peak picking.
    Bueschl C; Doppler M; Varga E; Seidl B; Flasch M; Warth B; Zanghellini J
    Bioinformatics; 2022 Jun; 38(13):3422-3428. PubMed ID: 35604083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IDSL.IPA Characterizes the Organic Chemical Space in Untargeted LC/HRMS Data Sets.
    Fakouri Baygi S; Kumar Y; Barupal DK
    J Proteome Res; 2022 Jun; 21(6):1485-1494. PubMed ID: 35579321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis.
    Rafiei A; Sleno L
    Rapid Commun Mass Spectrom; 2015 Jan; 29(1):119-27. PubMed ID: 25462372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IPO: a tool for automated optimization of XCMS parameters.
    Libiseller G; Dvorzak M; Kleb U; Gander E; Eisenberg T; Madeo F; Neumann S; Trausinger G; Sinner F; Pieber T; Magnes C
    BMC Bioinformatics; 2015 Apr; 16():118. PubMed ID: 25888443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC-MS metabolomics data.
    Chetnik K; Petrick L; Pandey G
    Metabolomics; 2020 Oct; 16(11):117. PubMed ID: 33085002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated optimization of XCMS parameters for improved peak picking of liquid chromatography-mass spectrometry data using the coefficient of variation and parameter sweeping for untargeted metabolomics.
    Manier SK; Keller A; Meyer MR
    Drug Test Anal; 2019 Jun; 11(6):752-761. PubMed ID: 30479047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality evaluation of extracted ion chromatograms and chromatographic peaks in liquid chromatography/mass spectrometry-based metabolomics data.
    Zhang W; Zhao PX
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S5. PubMed ID: 25350128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. peakPantheR, an R package for large-scale targeted extraction and integration of annotated metabolic features in LC-MS profiling datasets.
    Wolfer AM; D S Correia G; Sands CJ; Camuzeaux S; Yuen AHY; Chekmeneva E; Takáts Z; Pearce JTM; Lewis MR
    Bioinformatics; 2021 Dec; 37(24):4886-4888. PubMed ID: 34125879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach.
    Yu T; Jones DP
    Bioinformatics; 2014 Oct; 30(20):2941-8. PubMed ID: 25005748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CPVA: a web-based metabolomic tool for chromatographic peak visualization and annotation.
    Luan H; Jiang X; Ji F; Lan Z; Cai Z; Zhang W
    Bioinformatics; 2020 Jun; 36(12):3913-3915. PubMed ID: 32186699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-MSNet: a point cloud-based deep learning model for untargeted feature detection and quantification in profile LC-HRMS data.
    Wang R; Lu M; An S; Wang J; Yu C
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37071700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AlpsNMR: an R package for signal processing of fully untargeted NMR-based metabolomics.
    Madrid-Gambin F; Oller-Moreno S; Fernandez L; Bartova S; Giner MP; Joyce C; Ferraro F; Montoliu I; Moco S; Marco S
    Bioinformatics; 2020 May; 36(9):2943-2945. PubMed ID: 31930381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fake metabolomics chromatogram generation for facilitating deep learning of peak-picking neural networks.
    Kanazawa S; Noda A; Ito A; Hashimoto K; Kunisawa A; Nakanishi T; Kajihara S; Mukai N; Iida J; Fukusaki E; Matsuda F
    J Biosci Bioeng; 2021 Feb; 131(2):207-212. PubMed ID: 33051155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification.
    Beirnaert C; Meysman P; Vu TN; Hermans N; Apers S; Pieters L; Covaci A; Laukens K
    PLoS Comput Biol; 2018 Mar; 14(3):e1006018. PubMed ID: 29494588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics.
    Bonini P; Kind T; Tsugawa H; Barupal DK; Fiehn O
    Anal Chem; 2020 Jun; 92(11):7515-7522. PubMed ID: 32390414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. automRm: An R Package for Fully Automatic LC-QQQ-MS Data Preprocessing Powered by Machine Learning.
    Eilertz D; Mitterer M; Buescher JM
    Anal Chem; 2022 Apr; 94(16):6163-6171. PubMed ID: 35412809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Assisted Peak Curation for Large-Scale LC-MS Metabolomics.
    Gloaguen Y; Kirwan JA; Beule D
    Anal Chem; 2022 Mar; 94(12):4930-4937. PubMed ID: 35290737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation.
    Zhang W; Chang J; Lei Z; Huhman D; Sumner LW; Zhao PX
    Anal Chem; 2014 Jul; 86(13):6245-53. PubMed ID: 24856452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomics Data Preprocessing Using ADAP and MZmine 2.
    Du X; Smirnov A; Pluskal T; Jia W; Sumner S
    Methods Mol Biol; 2020; 2104():25-48. PubMed ID: 31953811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Understanding of the Discrepancies between Common Peak Picking Algorithms in Liquid Chromatography-Mass Spectrometry-Based Metabolomics.
    Guo J; Huan T
    Anal Chem; 2023 Apr; 95(14):5894-5902. PubMed ID: 36972195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.