These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 35604153)
1. Combining Human Organoids and Organ-on-a-Chip Technology to Model Intestinal Region-Specific Functionality. Kulkarni G; Apostolou A; Ewart L; Lucchesi C; Kasendra M J Vis Exp; 2022 May; (183):. PubMed ID: 35604153 [TBL] [Abstract][Full Text] [Related]
2. A Novel Microphysiological Colon Platform to Decipher Mechanisms Driving Human Intestinal Permeability. Apostolou A; Panchakshari RA; Banerjee A; Manatakis DV; Paraskevopoulou MD; Luc R; Abu-Ali G; Dimitriou A; Lucchesi C; Kulkarni G; Maulana TI; Kasendra M; Kerns JS; Bleck B; Ewart L; Manolakos ES; Hamilton GA; Giallourakis C; Karalis K Cell Mol Gastroenterol Hepatol; 2021; 12(5):1719-1741. PubMed ID: 34284165 [TBL] [Abstract][Full Text] [Related]
3. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Kasendra M; Tovaglieri A; Sontheimer-Phelps A; Jalili-Firoozinezhad S; Bein A; Chalkiadaki A; Scholl W; Zhang C; Rickner H; Richmond CA; Li H; Breault DT; Ingber DE Sci Rep; 2018 Feb; 8(1):2871. PubMed ID: 29440725 [TBL] [Abstract][Full Text] [Related]
4. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling. Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168 [TBL] [Abstract][Full Text] [Related]
5. Protocol for generating and analyzing organ-on-chip using human and mouse intestinal organoids. Hensel IV; Steinhauer M; Fairless R; Resnik-Docampo M STAR Protoc; 2024 Jun; 5(2):103037. PubMed ID: 38676928 [TBL] [Abstract][Full Text] [Related]
6. Duodenum Intestine-Chip for preclinical drug assessment in a human relevant model. Kasendra M; Luc R; Yin J; Manatakis DV; Kulkarni G; Lucchesi C; Sliz J; Apostolou A; Sunuwar L; Obrigewitch J; Jang KJ; Hamilton GA; Donowitz M; Karalis K Elife; 2020 Jan; 9():. PubMed ID: 31933478 [TBL] [Abstract][Full Text] [Related]
7. Human Colon-on-a-Chip Enables Continuous In Vitro Analysis of Colon Mucus Layer Accumulation and Physiology. Sontheimer-Phelps A; Chou DB; Tovaglieri A; Ferrante TC; Duckworth T; Fadel C; Frismantas V; Sutherland AD; Jalili-Firoozinezhad S; Kasendra M; Stas E; Weaver JC; Richmond CA; Levy O; Prantil-Baun R; Breault DT; Ingber DE Cell Mol Gastroenterol Hepatol; 2020; 9(3):507-526. PubMed ID: 31778828 [TBL] [Abstract][Full Text] [Related]
8. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Li XG; Chen MX; Zhao SQ; Wang XQ Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185 [TBL] [Abstract][Full Text] [Related]
9. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
10. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Moerkens R; Mooiweer J; Ramírez-Sánchez AD; Oelen R; Franke L; Wijmenga C; Barrett RJ; Jonkers IH; Withoff S Cell Rep; 2024 Jul; 43(7):114247. PubMed ID: 38907996 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Morphogenesis in Canine Gut-on-a-Chip Using Intestinal Organoids Derived from Inflammatory Bowel Disease Patients. Nagao I; Nakazawa M; Ambrosini YM J Vis Exp; 2024 Feb; (204):. PubMed ID: 38407238 [TBL] [Abstract][Full Text] [Related]
12. Listen to Your Gut: Key Concepts for Bioengineering Advanced Models of the Intestine. Cameron O; Neves JF; Gentleman E Adv Sci (Weinh); 2024 Feb; 11(5):e2302165. PubMed ID: 38009508 [TBL] [Abstract][Full Text] [Related]
13. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Fang G; Lu H; Al-Nakashli R; Chapman R; Zhang Y; Ju LA; Lin G; Stenzel MH; Jin D Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34638112 [TBL] [Abstract][Full Text] [Related]
14. A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model. Baert Y; Ruetschle I; Cools W; Oehme A; Lorenz A; Marx U; Goossens E; Maschmeyer I Hum Reprod; 2020 May; 35(5):1029-1044. PubMed ID: 32390056 [TBL] [Abstract][Full Text] [Related]
16. Human intestinal models to study interactions between intestine and microbes. Aguilar-Rojas A; Olivo-Marin JC; Guillen N Open Biol; 2020 Oct; 10(10):200199. PubMed ID: 33081633 [TBL] [Abstract][Full Text] [Related]
17. Culture of Piglet Intestinal 3D Organoids from Cryopreserved Epithelial Crypts and Establishment of Cell Monolayers. Mussard E; Lencina C; Boudry G; Achard CS; Klotz C; Combes S; Beaumont M J Vis Exp; 2023 Feb; (192):. PubMed ID: 36847381 [TBL] [Abstract][Full Text] [Related]
18. A Biomimetic Human Gut-on-a-Chip for Modeling Drug Metabolism in Intestine. Guo Y; Li Z; Su W; Wang L; Zhu Y; Qin J Artif Organs; 2018 Dec; 42(12):1196-1205. PubMed ID: 30256442 [TBL] [Abstract][Full Text] [Related]
19. Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Santbergen MJC; van der Zande M; Gerssen A; Bouwmeester H; Nielen MWF Anal Bioanal Chem; 2020 Feb; 412(5):1111-1122. PubMed ID: 31865418 [TBL] [Abstract][Full Text] [Related]
20. Functional intestinal monolayers from organoids derived from human iPS cells for drug discovery research. Inui T; Uraya Y; Yokota J; Yamashita T; Kawai K; Okada K; Ueyama-Toba Y; Mizuguchi H Stem Cell Res Ther; 2024 Feb; 15(1):57. PubMed ID: 38424603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]