These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35604244)

  • 1. A Trifunctional Ni-P/Fe-P Collaborated Electrocatalyst Enables Self-Powered Energy Systems.
    Yang R; Zheng X; Qin M; Lin B; Shi X; Wang Y
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201594. PubMed ID: 35604244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Powered Hydrogen Production with Improved Energy Efficiency via Polysulfides Redox.
    Ren JT; Chen L; Wang HY; Tian W; Wang L; Sun M; Feng Y; Zhai SX; Yuan ZY
    ACS Nano; 2023 Dec; 17(24):25707-25720. PubMed ID: 38047808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar-Powered AEM Electrolyzer via PGM-Free (Oxy)hydroxide Anode with Solar to Hydrogen Conversion Efficiency of 12.44.
    Ha JS; Park Y; Jeong JY; Lee SH; Lee SJ; Kim IT; Park SH; Jin H; Kim SM; Choi S; Kim C; Choi SM; Kang BK; Lee HM; Park YS
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401782. PubMed ID: 38654698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridized Mechanical and Solar Energy-Driven Self-Powered Hydrogen Production.
    Wei X; Wen Z; Liu Y; Zhai N; Wei A; Feng K; Yuan G; Zhong J; Qiang Y; Sun X
    Nanomicro Lett; 2020 Apr; 12(1):88. PubMed ID: 34138116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting.
    Xin Y; Kan X; Gan LY; Zhang Z
    ACS Nano; 2017 Oct; 11(10):10303-10312. PubMed ID: 28898052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-powered H
    Liu X; He J; Zhao S; Liu Y; Zhao Z; Luo J; Hu G; Sun X; Ding Y
    Nat Commun; 2018 Oct; 9(1):4365. PubMed ID: 30341311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-Hydrophilic Leaflike Sn
    Riyajuddin S; Pahuja M; Sachdeva PK; Azmi K; Kumar S; Afshan M; Ali F; Sultana J; Maruyama T; Bera C; Ghosh K
    ACS Nano; 2022 Mar; 16(3):4861-4875. PubMed ID: 35188366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells.
    Asiri AM; Ren D; Zhang H; Bahadar Khan S; Alamry KA; Marwani HM; Sherjeel Javed Khan M; Adeosun WA; Zakeeruddin SM; Grätzel M
    ChemSusChem; 2022 Feb; 15(4):e202102471. PubMed ID: 34962096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting.
    Morales-Guio CG; Mayer MT; Yella A; Tilley SD; Grätzel M; Hu X
    J Am Chem Soc; 2015 Aug; 137(31):9927-36. PubMed ID: 26200221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously Integrating Single Atomic Cobalt Sites and Co
    Li Y; Cao R; Li L; Tang X; Chu T; Huang B; Yuan K; Chen Y
    Small; 2020 Mar; 16(10):e1906735. PubMed ID: 31984632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile electrodeposition of ternary Ni-Fe-Co alloy nanostructure as a binder free, cost-effective and durable electrocatalyst for high-performance overall water splitting.
    Barati Darband G; Aliofkhazraei M; Rouhaghdam AS
    J Colloid Interface Sci; 2019 Jul; 547():407-420. PubMed ID: 30999075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RuCoO
    Zhou C; Zhao S; Meng H; Han Y; Jiang Q; Wang B; Shi X; Zhang W; Zhang L; Zhang R
    Nano Lett; 2021 Nov; 21(22):9633-9641. PubMed ID: 34761938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts.
    Zhao Y; Ding C; Zhu J; Qin W; Tao X; Fan F; Li R; Li C
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9653-9658. PubMed ID: 32181560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation.
    Sun F; Qin J; Wang Z; Yu M; Wu X; Sun X; Qiu J
    Nat Commun; 2021 Jul; 12(1):4182. PubMed ID: 34234135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency.
    Hsu SH; Miao J; Zhang L; Gao J; Wang H; Tao H; Hung SF; Vasileff A; Qiao SZ; Liu B
    Adv Mater; 2018 May; 30(18):e1707261. PubMed ID: 29569283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Hydrogen and Electricity Production Combined with Degradation of Organics Based on a Novel Solar Water-Energy Nexus System.
    Chang S; Hu C; Beyhaqi A; Wang M; Zeng Q
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2505-2515. PubMed ID: 31850726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-Hydrophilic Hierarchical Ni-Foam-Graphene-Carbon Nanotubes-Ni
    Riyajuddin S; Azmi K; Pahuja M; Kumar S; Maruyama T; Bera C; Ghosh K
    ACS Nano; 2021 Mar; 15(3):5586-5599. PubMed ID: 33625208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heteroatom-Doped Carbon-Encapsulated FeP Nanostructure: A Multifunctional Electrocatalyst for Zinc-Air Battery and Water Electrolyzer.
    Manikanta Kumar M; Raj CR
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15176-15186. PubMed ID: 35344334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Splitting: From Electrode to Green Energy System.
    Li X; Zhao L; Yu J; Liu X; Zhang X; Liu H; Zhou W
    Nanomicro Lett; 2020 Jun; 12(1):131. PubMed ID: 34138146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.