These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35604841)
1. 3D Printing of Metal-Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. Pal S; Su YZ; Chen YW; Yu CH; Kung CW; Yu SS ACS Appl Mater Interfaces; 2022 Jun; 14(24):28247-28257. PubMed ID: 35604841 [TBL] [Abstract][Full Text] [Related]
2. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. Lai CW; Yu SS ACS Appl Mater Interfaces; 2020 Jul; 12(30):34235-34244. PubMed ID: 32614162 [TBL] [Abstract][Full Text] [Related]
3. Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Lai PC; Yu SS Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33668913 [TBL] [Abstract][Full Text] [Related]
4. Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors. Vo TH; Lam PK; Sheng YJ; Tsao HK ACS Appl Mater Interfaces; 2023 Jul; 15(27):33109-33118. PubMed ID: 37382914 [TBL] [Abstract][Full Text] [Related]
5. Transparent, Mechanically Robust, Adhesive, Temperature-Tolerant, and 3D Printable Nanocomposite Ionogels for Flexible Sensors. Yu Z; Bao N; Liu H; Zhou X; Yu H; Sun Y; Meng D; Zhu L; Aminov N; Li H ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37877581 [TBL] [Abstract][Full Text] [Related]
6. Granular Ionogel Particle Inks for 3D Printed Tough and Stretchable Ionotronics. Yao Y; Hui Y; Wang Z; Chen H; Zhu H; Zhou N Research (Wash D C); 2023; 6():0104. PubMed ID: 37292516 [TBL] [Abstract][Full Text] [Related]
7. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance. He X; Zhang B; Liu Q; Chen H; Cheng J; Jian B; Yin H; Li H; Duan K; Zhang J; Ge Q Nat Commun; 2024 Jul; 15(1):6431. PubMed ID: 39085229 [TBL] [Abstract][Full Text] [Related]
8. 3D Printing of an Liu W; Erol O; Gracias DH ACS Appl Mater Interfaces; 2020 Jul; 12(29):33267-33275. PubMed ID: 32644785 [TBL] [Abstract][Full Text] [Related]
9. 3D printed mechanical robust cellulose derived liquid-free ionic conductive elastomer for multifunctional electronic devices. Lu C; Wang X; Jia Q; Xu S; Wang C; Du S; Wang J; Yong Q; Chu F Carbohydr Polym; 2024 Jan; 324():121496. PubMed ID: 37985087 [TBL] [Abstract][Full Text] [Related]
10. Extrusion Printing of Surface-Functionalized Metal-Organic Framework Inks for a High-Performance Wearable Volatile Organic Compound Sensor. Wang X; Qi H; Shao Y; Zhao M; Chen H; Chen Y; Ying Y; Wang Y Adv Sci (Weinh); 2024 Jul; 11(25):e2400207. PubMed ID: 38655847 [TBL] [Abstract][Full Text] [Related]
11. Metal-organic framework (MOF) facilitated highly stretchable and fatigue-resistant ionogels for recyclable sensors. Xia Q; Li W; Zou X; Zheng S; Liu Z; Li L; Yan F Mater Horiz; 2022 Oct; 9(11):2881-2892. PubMed ID: 36097959 [TBL] [Abstract][Full Text] [Related]
12. Vat Photopolymerization 3D Printing of Hydrogels Embedding Metal-Organic Frameworks for Photodynamic Antimicrobial Therapy. Wang Y; Frascella F; Gaglio CG; Pirri CF; Wei Q; Roppolo I ACS Appl Mater Interfaces; 2024 Oct; 16(42):57778-57791. PubMed ID: 39399980 [TBL] [Abstract][Full Text] [Related]
13. Spider-Silk-Inspired Tough, Self-Healing, and Melt-Spinnable Ionogels. Sun L; Huang H; Zhang L; Neisiany RE; Ma X; Tan H; You Z Adv Sci (Weinh); 2024 Jan; 11(3):e2305697. PubMed ID: 37997206 [TBL] [Abstract][Full Text] [Related]
14. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663 [TBL] [Abstract][Full Text] [Related]
15. Self-Powered Wireless Flexible Ionogel Wearable Devices. Li W; Lin K; Chen L; Yang D; Ge Q; Wang Z ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36881511 [TBL] [Abstract][Full Text] [Related]
16. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy. Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448 [TBL] [Abstract][Full Text] [Related]
17. A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. Xu L; Huang Z; Deng Z; Du Z; Sun TL; Guo ZH; Yue K Adv Mater; 2021 Dec; 33(51):e2105306. PubMed ID: 34647370 [TBL] [Abstract][Full Text] [Related]
18. Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Pruksawan S; Chee HL; Wang Z; Luo P; Chong YT; Thitsartarn W; Wang F Chem Asian J; 2022 Oct; 17(19):e202200677. PubMed ID: 35950549 [TBL] [Abstract][Full Text] [Related]
19. The Effect of Temperature and Shear on the Gelation of Cellulose Nanocrystals in Deep Eutectic Solvents. Ren ZF; Lin KY; Yu SS Biomacromolecules; 2024 Jan; 25(1):248-257. PubMed ID: 38110336 [TBL] [Abstract][Full Text] [Related]
20. Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays. Tong Y; Kucukdeger E; Halper J; Cesewski E; Karakozoff E; Haring AP; McIlvain D; Singh M; Khandelwal N; Meholic A; Laheri S; Sharma A; Johnson BN PLoS One; 2019; 14(3):e0214120. PubMed ID: 30921360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]