These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 35604854)

  • 1. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry.
    Lu SM; Li MY; Long YT
    J Phys Chem Lett; 2022 Jun; 13(21):4653-4659. PubMed ID: 35604854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries.
    Fu K; Kwon SR; Han D; Bohn PW
    Acc Chem Res; 2020 Apr; 53(4):719-728. PubMed ID: 31990518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Data Processing Methods for Single-Entity Electrochemistry.
    Li X; Fu YH; Wei N; Yu RJ; Bhatti H; Zhang L; Yan F; Xia F; Ewing AG; Long YT; Ying YL
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202316551. PubMed ID: 38411372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Surface Chemistry on Emulsion-Electrode Interactions and Electron-Transfer Kinetics in the Single-Entity Electrochemistry.
    Du M; Zhang L; Meng Y; Chen J; Liu F
    Anal Chem; 2024 Jan; 96(3):1038-1045. PubMed ID: 38181449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry.
    Kong N; He J; Yang W
    J Phys Chem Lett; 2023 Sep; 14(38):8513-8524. PubMed ID: 37722010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective.
    Lu SM; Vannoy KJ; Dick JE; Long YT
    J Am Chem Soc; 2023 Nov; 145(46):25043-25055. PubMed ID: 37934860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing bacterial detection and transport using redox impact electrochemistry.
    Shukla AK; Park D; Kim B
    Anal Chim Acta; 2024 Aug; 1319():342964. PubMed ID: 39122287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging.
    Neves MMPDS; Martín-Yerga D
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30373209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing low-concentration cell detection in single entity electrochemical systems through forced convection.
    Tian H; Lin J; Wang Q; Xin Q; Zhang D
    Talanta; 2024 Aug; 276():126266. PubMed ID: 38759360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Entity Electrochemistry for Digital Biosensing at Ultralow Concentrations.
    Lemay SG; Moazzenzade T
    Anal Chem; 2021 Jul; 93(26):9023-9031. PubMed ID: 34167291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field.
    Vacek J; Zatloukalová M; Dorčák V; Cifra M; Futera Z; Ostatná V
    Mikrochim Acta; 2023 Oct; 190(11):442. PubMed ID: 37847341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing Discrete Blocking Events at a Polarized Micro- or Submicro-Liquid/Liquid Interface.
    Zhang J; He S; Fang T; Xiang Z; Sun X; Yu J; Ouyang G; Huang X; Deng H
    J Phys Chem B; 2023 Oct; 127(41):8974-8981. PubMed ID: 37796864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Single-Entity Electrochemistry with Microelectrode Arrays.
    Alden SE; Zhang L; Wang Y; Lavrik NV; Thorgaard SN; Baker LA
    Anal Chem; 2024 Jun; 96(22):9177-9184. PubMed ID: 38780285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing conformational kinetics of catalase with and without magnetic field by single-entity collision electrochemistry.
    Ding Q; Sun Z; Ma W
    Sci Bull (Beijing); 2023 Nov; 68(21):2564-2573. PubMed ID: 37718236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting Individual Proteins and Their Surface Charge Variations in Solution by the Potentiometric Nanoimpact Method.
    Pandey P; Bhattarai N; Su L; Wang X; Leng F; Gerstman B; Chapagain PP; He J
    ACS Sens; 2022 Feb; 7(2):555-563. PubMed ID: 35060380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Detection of Single Living Bacteria: Single-Entity Electrochemistry Targeting Metabolic Products.
    Wang Q; Lin J; Li S; Tian H; Zhang D; Xin Q
    Anal Chem; 2023 Sep; 95(35):13082-13090. PubMed ID: 37603710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of applied potential on particle sizing precision in single-entity blocking electrochemistry.
    Liu EZ; Popescu SR; Eden A; Chung J; Roehrich B; Sepunaru L
    Electrochim Acta; 2023 Dec; 472():. PubMed ID: 39070043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconventional Electrochemistry in Micro-/Nanofluidic Systems.
    Sarkar S; Lai SCS; Lemay SG
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What keeps nanopores boiling.
    Giacomello A
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37724724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer bead size revealed
    Gemadzie G; Zhang B; Boika A
    Analyst; 2024 Jul; 149(15):4054-4059. PubMed ID: 38973495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.