These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35604963)

  • 41. Minimum variance beamforming combined with covariance matrix-based adaptive weighting for medical ultrasound imaging.
    Wang Y; Wang Y; Liu M; Lan Z; Zheng C; Peng H
    Biomed Eng Online; 2022 Jun; 21(1):40. PubMed ID: 35717330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ; Hyun D; Lediju M; Trahey GE
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications.
    Lim HG; Kim HH; Yoon C
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Main Uncertainties in the RF Ultrasound Scanning Simulation of the Standard Ultrasound Phantoms.
    Makūnaitė M; Jurkonis R; Lukoševičius A; Baranauskas M
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound plane-wave imaging.
    Zhao J; Wang Y; Yu J; Guo W; Li T; Zheng YP
    Ultrasonics; 2016 Feb; 65():23-33. PubMed ID: 26582600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.
    Hyun D; Trahey GE; Jakovljevic M; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1101-12. PubMed ID: 24960700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic-focusing strategies for real-time annular-array imaging.
    Ketterling JA; Filoux E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1830-9. PubMed ID: 22899130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Delay-encoded transmission and image reconstruction method in synthetic transmit aperture imaging.
    Gong P; Kolios MC; Xu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1745-56. PubMed ID: 26470037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Minimum requirement of artificial noise level for using noise-assisted correlation algorithm to suppress artifacts in ultrasonic Nakagami images.
    Tsui PH
    Ultrason Imaging; 2012 Apr; 34(2):110-24. PubMed ID: 22724316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Normalized Spatial Autocorrelation in Ultrasound B-Mode Imaging for Point-Scatterer Detection.
    Lou C; Liu Z; Yuchi M; Ding M
    Ultrasound Med Biol; 2024 May; 50(5):690-702. PubMed ID: 38331698
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging.
    Shin J; Huang L
    IEEE Trans Med Imaging; 2017 Feb; 36(2):396-406. PubMed ID: 27654323
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
    Dahl J; Jakovljevic M; Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):648-59. PubMed ID: 22547276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation.
    Mukaddim RA; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):586-598. PubMed ID: 32795968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasound elastography using multiple images.
    Rivaz H; Boctor EM; Choti MA; Hager GD
    Med Image Anal; 2014 Feb; 18(2):314-29. PubMed ID: 24361599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation.
    Sanchez JR; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1327-39. PubMed ID: 19574144
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrasound speckle reduction using modified Gabor filters.
    Dantas RG; Costa ET
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):530-8. PubMed ID: 17375822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vivo application of short-lag spatial coherence imaging in human liver.
    Jakovljevic M; Trahey GE; Nelson RC; Dahl JJ
    Ultrasound Med Biol; 2013 Mar; 39(3):534-42. PubMed ID: 23347642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial-angular compounding for elastography using beam steering on linear array transducers.
    Rao M; Chen Q; Shi H; Varghese T
    Med Phys; 2006 Mar; 33(3):618-26. PubMed ID: 16878565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Neural Networks for Ultrasound Beamforming.
    Luchies AC; Byram BC
    IEEE Trans Med Imaging; 2018 Sep; 37(9):2010-2021. PubMed ID: 29994441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.