These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35604965)

  • 1. Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization.
    Pyle RJ; Hughes RR; Ali AAS; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2339-2351. PubMed ID: 35604965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain Adapted Deep-Learning for Improved Ultrasonic Crack Characterization Using Limited Experimental Data.
    Pyle RJ; Bevan RLT; Hughes RR; Ali AAS; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1485-1496. PubMed ID: 35157583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning for Ultrasonic Crack Characterization in NDE.
    Pyle RJ; Bevan RLT; Hughes RR; Rachev RK; Ali AAS; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1854-1865. PubMed ID: 33338015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian deep learning-based
    Lee HH; Kim H
    Magn Reson Med; 2022 Jul; 88(1):38-52. PubMed ID: 35344604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.
    Abdar M; Samami M; Dehghani Mahmoodabad S; Doan T; Mazoure B; Hashemifesharaki R; Liu L; Khosravi A; Acharya UR; Makarenkov V; Nahavandi S
    Comput Biol Med; 2021 Aug; 135():104418. PubMed ID: 34052016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic Rough Crack Characterization Using Time-of-Flight Diffraction With Self-Attention Neural Network.
    Wang Z; Shi F; Ding J; Song X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Oct; 71(10):1289-1301. PubMed ID: 39264783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty quantification in multi-class image classification using chest X-ray images of COVID-19 and pneumonia.
    Whata A; Dibeco K; Madzima K; Obagbuwa I
    Front Artif Intell; 2024; 7():1410841. PubMed ID: 39359646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty quantification via localized gradients for deep learning-based medical image assessments.
    Schott B; Pinchuk D; Santoro-Fernandes V; Klaneček Ž; Rivetti L; Deatsch A; Perlman S; Li Y; Jeraj R
    Phys Med Biol; 2024 Jul; 69(15):. PubMed ID: 38981594
    [No Abstract]   [Full Text] [Related]  

  • 9. Uncertainty-aware image classification on 3D CT lung.
    Zahari R; Cox J; Obara B
    Comput Biol Med; 2024 Apr; 172():108324. PubMed ID: 38508053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning.
    Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L
    Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation.
    Buddenkotte T; Escudero Sanchez L; Crispin-Ortuzar M; Woitek R; McCague C; Brenton JD; Öktem O; Sala E; Rundo L
    Comput Biol Med; 2023 Sep; 163():107096. PubMed ID: 37302375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing.
    Peng Z; Fang X; Yan P; Shan H; Liu T; Pei X; Wang G; Liu B; Kalra MK; Xu XG
    Med Phys; 2020 Jun; 47(6):2526-2536. PubMed ID: 32155670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Uncertainty in Deep Learning of Radiologic Images.
    Faghani S; Moassefi M; Rouzrokh P; Khosravi B; Baffour FI; Ringler MD; Erickson BJ
    Radiology; 2023 Aug; 308(2):e222217. PubMed ID: 37526541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Defect Detection From Ultrasonic Images Using Deep Learning.
    Medak D; Posilovic L; Subasic M; Budimir M; Loncaric S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3126-3134. PubMed ID: 34010130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty propagation for dropout-based Bayesian neural networks.
    Mae Y; Kumagai W; Kanamori T
    Neural Netw; 2021 Dec; 144():394-406. PubMed ID: 34562813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generative adversarial network approach to (ensemble) weather prediction.
    Bihlo A
    Neural Netw; 2021 Jul; 139():1-16. PubMed ID: 33662648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting.
    Murad A; Kraemer FA; Bach K; Taylor G
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals.
    Stoean C; Stoean R; Atencia M; Abdar M; Velázquez-Pérez L; Khosravi A; Nahavandi S; Acharya UR; Joya G
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of calibration in uncertainty-based referral for deep learning.
    Zhang R; Gatsonis C; Steingrimsson JA
    Stat Methods Med Res; 2023 May; 32(5):927-943. PubMed ID: 37011026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy, uncertainty, and adaptability of automatic myocardial ASL segmentation using deep CNN.
    Do HP; Guo Y; Yoon AJ; Nayak KS
    Magn Reson Med; 2020 May; 83(5):1863-1874. PubMed ID: 31729078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.