BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35605193)

  • 41. Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect.
    Brain RA; Ramirez AJ; Fulton BA; Chambliss CK; Brooks BW
    Environ Sci Technol; 2008 Dec; 42(23):8965-70. PubMed ID: 19192826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum.
    Triglia T; Menting JG; Wilson C; Cowman AF
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13944-9. PubMed ID: 9391132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel and potent inhibitors for dihydropteroate synthase of
    Satuluri SH; Katari SK; Pasala C; Amineni U
    J Recept Signal Transduct Res; 2020 Jun; 40(3):246-256. PubMed ID: 32098568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deciphering the competitive inhibition of dihydropteroate synthase by 8 marcaptoguanine analogs: enhanced potency in phenylsulfonyl fragments.
    Das BK; Chakraborty D
    J Biomol Struct Dyn; 2022; 40(23):13083-13102. PubMed ID: 34581241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulfonamide resistance in Streptococcus pyogenes is associated with differences in the amino acid sequence of its chromosomal dihydropteroate synthase.
    Swedberg G; Ringertz S; Sköld O
    Antimicrob Agents Chemother; 1998 May; 42(5):1062-7. PubMed ID: 9593127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.
    Corral MG; Leroux J; Tresch S; Newton T; Stubbs KA; Mylne JS
    Pest Manag Sci; 2018 Jul; 74(7):1558-1563. PubMed ID: 29377434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acquired resistance to trimethoprim-sulfamethoxazole during Whipple disease and expression of the causative target gene.
    Bakkali N; Fenollar F; Biswas S; Rolain JM; Raoult D
    J Infect Dis; 2008 Jul; 198(1):101-8. PubMed ID: 18500934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of the carbamate herbicide, asulam, in the rat.
    Heijbroek WM; Muggleton DF; Parke DV
    Xenobiotica; 1984 Mar; 14(3):235-47. PubMed ID: 6711013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase, a potential target for the development of novel antimicrobial agents.
    Xiao B; Shi G; Chen X; Yan H; Ji X
    Structure; 1999 May; 7(5):489-96. PubMed ID: 10378268
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amino acid repetitions in the dihydropteroate synthase of Streptococcus pneumoniae lead to sulfonamide resistance with limited effects on substrate K(m).
    Haasum Y; Ström K; Wehelie R; Luna V; Roberts MC; Maskell JP; Hall LM; Swedberg G
    Antimicrob Agents Chemother; 2001 Mar; 45(3):805-9. PubMed ID: 11181365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of the bifunctional dihydroneopterin aldolase/6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Streptococcus pneumoniae.
    Garçon A; Levy C; Derrick JP
    J Mol Biol; 2006 Jul; 360(3):644-53. PubMed ID: 16781731
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A proof-of-concept receptor-based assay for sulfonamides.
    Liang X; Wang Z; Wang C; Wen K; Mi T; Zhang J; Zhang S
    Anal Biochem; 2013 Jul; 438(2):110-6. PubMed ID: 23567760
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a pterin-based fluorescent probe for screening dihydropteroate synthase.
    Zhao Y; Hammoudeh D; Lin W; Das S; Yun MK; Li Z; Griffith E; Chen T; White SW; Lee RE
    Bioconjug Chem; 2011 Oct; 22(10):2110-7. PubMed ID: 21916405
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antibacterial activity, computational analysis and host toxicity study of thymol-sulfonamide conjugates.
    Swain SS; Paidesetty SK; Padhy RN
    Biomed Pharmacother; 2017 Apr; 88():181-193. PubMed ID: 28107695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and partial characterization of 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase and 7,8-dihydropteroate synthase from Escherichia coli MC4100.
    Talarico TL; Dev IK; Dallas WS; Ferone R; Ray PH
    J Bacteriol; 1991 Nov; 173(21):7029-32. PubMed ID: 1657875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bisubstrate analogue inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: New design with improved properties.
    Shi G; Shaw G; Liang YH; Subburaman P; Li Y; Wu Y; Yan H; Ji X
    Bioorg Med Chem; 2012 Jan; 20(1):47-57. PubMed ID: 22169600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elucidation of the catalytic mechanism of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase using QM/MM calculations.
    Jongkon N; Gleeson D; Gleeson MP
    Org Biomol Chem; 2018 Aug; 16(34):6239-6249. PubMed ID: 30109337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure-based design of novel pyrimido[4,5-c]pyridazine derivatives as dihydropteroate synthase inhibitors with increased affinity.
    Zhao Y; Hammoudeh D; Yun MK; Qi J; White SW; Lee RE
    ChemMedChem; 2012 May; 7(5):861-70. PubMed ID: 22416048
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sulfonamide resistance: mechanisms and trends.
    Sköld O
    Drug Resist Updat; 2000 Jun; 3(3):155-160. PubMed ID: 11498380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A dual-target herbicidal inhibitor of lysine biosynthesis.
    Mackie ERR; Barrow AS; Christoff RM; Abbott BM; Gendall AR; Soares da Costa TP
    Elife; 2022 Jun; 11():. PubMed ID: 35723913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.