These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 35605194)

  • 21. Functional Characterization of Three Novel Genes Encoding Diacylglycerol Acyltransferase (DGAT) from Oil-Rich Tubers of Cyperus esculentus.
    Liu D; Ji H; Yang Z
    Plant Cell Physiol; 2020 Jan; 61(1):118-129. PubMed ID: 31532486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seeds as oil factories.
    Baud S
    Plant Reprod; 2018 Sep; 31(3):213-235. PubMed ID: 29429143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis.
    Baud S; Lepiniec L
    Plant Physiol Biochem; 2009 Jun; 47(6):448-55. PubMed ID: 19136270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions.
    Nam JW; Lee HG; Do H; Kim HU; Seo PJ
    J Exp Bot; 2022 May; 73(9):2905-2917. PubMed ID: 35560201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.).
    Claver A; Rey R; López MV; Picorel R; Alfonso M
    J Plant Physiol; 2017 Jan; 208():7-16. PubMed ID: 27889523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus.
    Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL
    Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis.
    Sanjaya ; Durrett TP; Weise SE; Benning C
    Plant Biotechnol J; 2011 Oct; 9(8):874-83. PubMed ID: 22003502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues.
    Yang Y; Munz J; Cass C; Zienkiewicz A; Kong Q; Ma W; ; Sedbrook J; Benning C
    Plant Physiol; 2015 Nov; 169(3):1836-47. PubMed ID: 26419778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic Analysis Reveals Key Genes Involved in Oil and Linoleic Acid Biosynthesis during
    Nan S; Zhang L; Hu X; Miao X; Han X; Fu H
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445076
    [No Abstract]   [Full Text] [Related]  

  • 32. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways.
    Slocombe SP; Cornah J; Pinfield-Wells H; Soady K; Zhang Q; Gilday A; Dyer JM; Graham IA
    Plant Biotechnol J; 2009 Sep; 7(7):694-703. PubMed ID: 19702756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Better together: Protein partnerships for lineage-specific oil accumulation.
    Busta L; Chapman KD; Cahoon EB
    Curr Opin Plant Biol; 2022 Apr; 66():102191. PubMed ID: 35220088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.
    Vanhercke T; El Tahchy A; Liu Q; Zhou XR; Shrestha P; Divi UK; Ral JP; Mansour MP; Nichols PD; James CN; Horn PJ; Chapman KD; Beaudoin F; Ruiz-López N; Larkin PJ; de Feyter RC; Singh SP; Petrie JR
    Plant Biotechnol J; 2014 Feb; 12(2):231-9. PubMed ID: 24151938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells.
    Zhang M; Cao X; Jia Q; Ohlrogge J
    Plant J; 2016 Oct; 88(1):95-107. PubMed ID: 27288837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii).
    Zhang L; Wu P; Lu W; Lü S
    BMC Plant Biol; 2018 Oct; 18(1):248. PubMed ID: 30340540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seed storage oil catabolism: a story of give and take.
    Theodoulou FL; Eastmond PJ
    Curr Opin Plant Biol; 2012 Jun; 15(3):322-8. PubMed ID: 22516438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variety of Plant Oils: Species-Specific Lipid Biosynthesis.
    Clews AC; Ulch BA; Jesionowska M; Hong J; Mullen RT; Xu Y
    Plant Cell Physiol; 2024 Jun; 65(6):845-862. PubMed ID: 37971406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil.
    Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J
    Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.