These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35605285)

  • 41. Probing interfacial charge transfer in heterojunctions for photocatalysis.
    Li M; Gong Y; Wang Y; He T
    Phys Chem Chem Phys; 2022 Aug; 24(33):19659-19672. PubMed ID: 35968928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of M-BiVO
    Baral B; Reddy KH; Parida KM
    J Colloid Interface Sci; 2019 Oct; 554():278-295. PubMed ID: 31302366
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ synthesis of g-C
    Ren B; Wang T; Qu G; Deng F; Liang D; Yang W; Liu M
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):19122-19133. PubMed ID: 29725923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-Situ-Reduced Synthesis of Ti³⁺ Self-Doped TiO₂/g-C₃N₄ Heterojunctions with High Photocatalytic Performance under LED Light Irradiation.
    Li K; Gao S; Wang Q; Xu H; Wang Z; Huang B; Dai Y; Lu J
    ACS Appl Mater Interfaces; 2015 May; 7(17):9023-30. PubMed ID: 25867955
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One-Pot Hydrothermal Synthesis of SnO
    Liu H; Du C; Li M; Zhang S; Bai H; Yang L; Zhang S
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28686-28694. PubMed ID: 30070823
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions.
    Lu K; Hou F; Fu W; Xue F; Liu M
    Phys Chem Chem Phys; 2021 Oct; 23(39):22743-22749. PubMed ID: 34608466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrafast interfacial charge evolution of the Type-II cadmium Sulfide/Molybdenum disulfide heterostructure for photocatalytic hydrogen production.
    Liu H; Tan P; Liu Y; Zhai H; Du W; Liu X; Pan J
    J Colloid Interface Sci; 2022 Aug; 619():246-256. PubMed ID: 35395539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural Modification Strategies, Interfacial Charge-Carrier Dynamics, and Solar Energy Conversion Applications of Organic-Inorganic Halide Perovskite Photocatalysts.
    Feng J; Mak CH; Yu L; Han B; Shen HH; Santoso SP; Yuan M; Li FF; Song H; Colmenares JC; Hsu HY
    Small Methods; 2024 Feb; 8(2):e2300429. PubMed ID: 37381684
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria.
    Xia P; Cao S; Zhu B; Liu M; Shi M; Yu J; Zhang Y
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5218-5225. PubMed ID: 31944512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shallow Trap State-Induced Efficient Electron Transfer at the Interface of Heterojunction Photocatalysts: The Crucial Role of Vacancy Defects.
    Xue J; Fujitsuka M; Majima T
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40860-40867. PubMed ID: 31578057
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity.
    Li X; Xiong J; Gao X; Ma J; Chen Z; Kang B; Liu J; Li H; Feng Z; Huang J
    J Hazard Mater; 2020 Apr; 387():121690. PubMed ID: 31889599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile Synthesis of Novel Redox-Mediator-free Direct Z-Scheme CaIn2S4 Marigold-Flower-like/TiO2 Photocatalysts with Superior Photocatalytic Efficiency.
    Jo WK; Sivakumar Natarajan T
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17138-54. PubMed ID: 26186618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulating the Charge-Transfer Step of a p-n Heterojunction with Nitrogen-Doped Carbon: A Promising Strategy To Improve Photocatalytic Performance.
    Yuan Y; Sun L; Zeng S; Zhan W; Wang X; Han X
    Chemistry; 2020 Jan; 26(4):921-926. PubMed ID: 31693235
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sunlight mediated enhanced photocatalytic activity of TiO
    Singh J; Juneja S; Soni RK; Bhattacharya J
    J Colloid Interface Sci; 2021 May; 590():60-71. PubMed ID: 33524721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molybdenum disulfide loading on a Z-scheme graphitic carbon nitride and lanthanum nickelate heterojunction for enhanced photocatalysis: Interfacial charge transfer and mechanistic insights.
    Bao J; Jiang X; Huang L; Quan W; Zhang C; Wang Y; Wang H; Zeng Y; Zhang W; Ma Y; Yu S; Hu X; Tian H
    J Colloid Interface Sci; 2022 Apr; 611():684-694. PubMed ID: 34974228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Architecting a Double Charge-Transfer Dynamics In
    Baral B; Mansingh S; Reddy KH; Bariki R; Parida K
    ACS Omega; 2020 Mar; 5(10):5270-5284. PubMed ID: 32201816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS
    Cho J; Suwandaratne NS; Razek S; Choi YH; Piper LFJ; Watson DF; Banerjee S
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43728-43740. PubMed ID: 32866372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Excited-state and charge-carrier dynamics in binary conjugated polymer dots towards efficient photocatalytic hydrogen evolution.
    Liu A; Wang S; Song H; Liu Y; Gedda L; Edwards K; Hammarström L; Tian H
    Phys Chem Chem Phys; 2023 Jan; 25(4):2935-2945. PubMed ID: 36606387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Efficient Performance and Conversion Pathway of Photocatalytic CH
    Hu L; He H; Xia D; Huang Y; Xu J; Li H; He C; Yang W; Shu D; Wong PK
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18693-18708. PubMed ID: 29732890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic effect of the MoO
    Wang X; Li T; Zhu P; Jin Z
    Dalton Trans; 2022 Feb; 51(7):2912-2922. PubMed ID: 35103728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.