BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35605406)

  • 21. Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein.
    Eskandari V
    J Mol Model; 2022 May; 28(6):153. PubMed ID: 35578055
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Watuguly T; Bare Y; Ratih Tirto Sari D; Kustarini Samsuria I
    Pak J Biol Sci; 2022 Jan; 25(9):867-874. PubMed ID: 36098090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19).
    Nayak SK
    Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective Utilization of
    Kai H; Sugamoto K; Toshima S; Goto Y; Nakayama T; Morishita K; Kunitake H
    Plants (Basel); 2022 Feb; 11(4):. PubMed ID: 35214901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases.
    Kumar V; Roy K
    SAR QSAR Environ Res; 2020 Jul; 31(7):511-526. PubMed ID: 32543892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption ionization mass spectrometry.
    Gurard-Levin ZA; Liu C; Jekle A; Jaisinghani R; Ren S; Vandyck K; Jochmans D; Leyssen P; Neyts J; Blatt LM; Beigelman L; Symons JA; Raboisson P; Scholle MD; Deval J
    Antiviral Res; 2020 Oct; 182():104924. PubMed ID: 32896566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro.
    Johnson MH; de Mejia EG; Fan J; Lila MA; Yousef GG
    Mol Nutr Food Res; 2013 Jul; 57(7):1182-97. PubMed ID: 23526625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy.
    Ridgway H; Chasapis CT; Kelaidonis K; Ligielli I; Moore GJ; Gadanec LK; Zulli A; Apostolopoulos V; Mavromoustakos T; Matsoukas JM
    Viruses; 2022 May; 14(5):. PubMed ID: 35632769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro.
    Zhan Y; Ta W; Tang W; Hua R; Wang J; Wang C; Lu W
    Drug Dev Res; 2021 Dec; 82(8):1124-1130. PubMed ID: 33847382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology.
    Vieira C; Nery L; Martins L; Jabour L; Dias R; Simões E Silva AC
    Curr Drug Targets; 2021; 22(3):254-281. PubMed ID: 33081670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening.
    Sanachai K; Somboon T; Wilasluck P; Deetanya P; Wolschann P; Langer T; Lee VS; Wangkanont K; Rungrotmongkol T; Hannongbua S
    PLoS One; 2022; 17(6):e0269563. PubMed ID: 35771802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Extracts of
    Lin S; Wang X; Tang RW; Lee HC; Chan HH; Choi SSA; Dong TT; Leung KW; Webb SE; Miller AL; Tsim KW
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Novel Drug Candidates for the Inhibition of Catalytic Cleavage Activity of Coronavirus 3CL-like Protease Enzyme.
    Gurung AB; Al-Anazi KM; Ali MA; Lee J; Farah MA
    Curr Pharm Biotechnol; 2022; 23(7):959-969. PubMed ID: 34097590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of hyphenated analytical techniques to identify the bioactive constituents of Gunnera perpensa L., a South African medicinal plant, which potently inhibit SARS-CoV-2 spike glycoprotein-host ACE2 binding.
    Invernizzi L; Moyo P; Cassel J; Isaacs FJ; Salvino JM; Montaner LJ; Tietjen I; Maharaj V
    Anal Bioanal Chem; 2022 May; 414(13):3971-3985. PubMed ID: 35419694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Screening of Natural Products Inhibitors of SARS-CoV-2 Entry.
    González-Maldonado P; Alvarenga N; Burgos-Edwards A; Flores-Giubi ME; Barúa JE; Romero-Rodríguez MC; Soto-Rifo R; Valiente-Echeverría F; Langjahr P; Cantero-González G; Sotelo PH
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MRC5 cells engineered to express ACE2 serve as a model system for the discovery of antivirals targeting SARS-CoV-2.
    Uemura K; Sasaki M; Sanaki T; Toba S; Takahashi Y; Orba Y; Hall WW; Maenaka K; Sawa H; Sato A
    Sci Rep; 2021 Mar; 11(1):5376. PubMed ID: 33686154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic Aspects of Medicinal Plants and Secondary Metabolites against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
    Malekmohammad K; Rafieian-Kopaei M
    Curr Pharm Des; 2021; 27(38):3996-4007. PubMed ID: 34225607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Role of ACE2 in COVID-19].
    Imai Y
    Nihon Yakurigaku Zasshi; 2022; 157(2):115-118. PubMed ID: 35228442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repositioning of histamine H
    Ge S; Wang X; Hou Y; Lv Y; Wang C; He H
    Eur J Pharmacol; 2021 Apr; 896():173897. PubMed ID: 33497607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Silico Screening of Potential Chinese Herbal Medicine Against COVID-19 by Targeting SARS-CoV-2 3CLpro and Angiotensin Converting Enzyme II Using Molecular Docking.
    Gao LQ; Xu J; Chen SD
    Chin J Integr Med; 2020 Jul; 26(7):527-532. PubMed ID: 32632717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.