These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35605495)
1. A deep learning framework for enhancer prediction using word embedding and sequence generation. Geng Q; Yang R; Zhang L Biophys Chem; 2022 Jul; 286():106822. PubMed ID: 35605495 [TBL] [Abstract][Full Text] [Related]
2. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Yang R; Wu F; Zhang C; Zhang L Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317 [TBL] [Abstract][Full Text] [Related]
3. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Le NQK; Ho QT; Nguyen TT; Ou YY Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539511 [TBL] [Abstract][Full Text] [Related]
4. iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework. Liao M; Zhao JP; Tian J; Zheng CH BMC Bioinformatics; 2022 Nov; 23(1):480. PubMed ID: 36376800 [TBL] [Abstract][Full Text] [Related]
5. A Novel Position-Specific Encoding Algorithm (SeqPose) of Nucleotide Sequences and Its Application for Detecting Enhancers. Mu X; Wang Y; Duan M; Liu S; Li F; Wang X; Zhang K; Huang L; Zhou F Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802922 [TBL] [Abstract][Full Text] [Related]
6. ADH-Enhancer: an attention-based deep hybrid framework for enhancer identification and strength prediction. Mehmood F; Arshad S; Shoaib M Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385876 [TBL] [Abstract][Full Text] [Related]
7. A deep learning framework combined with word embedding to identify DNA replication origins. Wu F; Yang R; Zhang C; Zhang L Sci Rep; 2021 Jan; 11(1):844. PubMed ID: 33436981 [TBL] [Abstract][Full Text] [Related]
8. Identifying SNAREs by Incorporating Deep Learning Architecture and Amino Acid Embedding Representation. Le NQK; Huynh TT Front Physiol; 2019; 10():1501. PubMed ID: 31920706 [TBL] [Abstract][Full Text] [Related]
9. iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks. Nguyen QH; Nguyen-Vo TH; Le NQK; Do TTT; Rahardja S; Nguyen BP BMC Genomics; 2019 Dec; 20(Suppl 9):951. PubMed ID: 31874637 [TBL] [Abstract][Full Text] [Related]
10. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models. Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075 [TBL] [Abstract][Full Text] [Related]
11. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences. Li H; Gong XJ; Yu H; Zhou C Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670 [TBL] [Abstract][Full Text] [Related]
12. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction. Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633 [TBL] [Abstract][Full Text] [Related]
13. Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction. Min X; Lu F; Li C Curr Pharm Des; 2021; 27(15):1847-1855. PubMed ID: 33234095 [TBL] [Abstract][Full Text] [Related]
14. MfeCNN: Mixture Feature Embedding Convolutional Neural Network for Data Mapping. Li D; Huang M; Li X; Ruan Y; Yao L IEEE Trans Nanobioscience; 2018 Jul; 17(3):165-171. PubMed ID: 29993581 [TBL] [Abstract][Full Text] [Related]
15. Enhancer-LSTMAtt: A Bi-LSTM and Attention-Based Deep Learning Method for Enhancer Recognition. Huang G; Luo W; Zhang G; Zheng P; Yao Y; Lyu J; Liu Y; Wei DQ Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883552 [TBL] [Abstract][Full Text] [Related]
16. A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. Amilpur S; Bhukya R J Bioinform Comput Biol; 2022 Apr; 20(2):2250005. PubMed ID: 35264081 [TBL] [Abstract][Full Text] [Related]
17. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features. Mahmud SMH; Goh KOM; Hosen MF; Nandi D; Shoombuatong W Sci Rep; 2024 Feb; 14(1):2961. PubMed ID: 38316843 [TBL] [Abstract][Full Text] [Related]
18. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture. Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635 [TBL] [Abstract][Full Text] [Related]
19. PorcineAI-Enhancer: Prediction of Pig Enhancer Sequences Using Convolutional Neural Networks. Wang J; Zhang H; Chen N; Zeng T; Ai X; Wu K Animals (Basel); 2023 Sep; 13(18):. PubMed ID: 37760334 [TBL] [Abstract][Full Text] [Related]
20. Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks. Sun C; Zhang N; Yu P; Wu X; Li Q; Li T; Li H; Xiao X; Shalmani A; Li L; Che D; Wang X; Zhang P; Chen Z; Liu T; Zhao J; Hua J; Liao M Mol Omics; 2020 Oct; 16(5):455-464. PubMed ID: 32568326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]