BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35605782)

  • 1. Long-term semi-continuous acidogenic fermentation for food wastes treatment: Effect of high organic loading rates at low hydraulic retention times and uncontrolled pH conditions.
    Yuan Q; Lou Y; Wu J; Sun Y
    Bioresour Technol; 2022 Aug; 357():127356. PubMed ID: 35605782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.
    Wu Y; Ma H; Zheng M; Wang K
    Bioresour Technol; 2015 Sep; 191():53-8. PubMed ID: 25983222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters.
    De Groof V; Coma M; Arnot T; Leak DJ; Lanham AB
    Waste Manag; 2021 May; 127():80-89. PubMed ID: 33932853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH.
    Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on ethanol-type acidogenic fermentation of fruit and vegetable waste.
    Wu Y; Wang C; Zheng M; Zuo J; Wu J; Wang K; Yang B
    Waste Manag; 2017 Feb; 60():158-163. PubMed ID: 27707543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste.
    Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I
    Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population.
    Gouveia AR; Freitas EB; Galinha CF; Carvalho G; Duque AF; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):108-116. PubMed ID: 27422276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic membrane-assisted fermentation of food wastes for enhancing lactic acid production.
    Tang J; Wang XC; Hu Y; Ngo HH; Li Y
    Bioresour Technol; 2017 Jun; 234():40-47. PubMed ID: 28315603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.
    Tang J; Wang X; Hu Y; Zhang Y; Li Y
    Waste Manag; 2016 Jun; 52():278-85. PubMed ID: 27040090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target and Enhance Ethanol and Butyrate Production from Anaerobic Fermentation via the pH and Organic Loading Rate Combined Strategy.
    Shi C; Liu Y; Wu Y; Han D; Ma J; Li K; Wang K; Zhou Y
    Appl Biochem Biotechnol; 2022 Dec; 194(12):6367-6385. PubMed ID: 35921030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Start-up and continuous operation of bio-hydrogen production reactor at pH 5].
    Gong ML; Ren NQ; Tang J
    Huan Jing Ke Xue; 2005 Mar; 26(2):177-80. PubMed ID: 16004324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH.
    Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G
    J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH and hydraulic retention time regulation for anaerobic fermentation: Focus on volatile fatty acids production/distribution, microbial community succession and interactive correlation.
    Lv N; Cai G; Pan X; Li Y; Wang R; Li J; Li C; Zhu G
    Bioresour Technol; 2022 Mar; 347():126310. PubMed ID: 34767905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher load operation by adoption of ethanol fermentation pretreatment on methane fermentation of food waste.
    Sun J; Kosaki Y; Watanabe N
    Bioresour Technol; 2020 Feb; 297():122475. PubMed ID: 31787512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process.
    Li YY; Sasaki H; Yamashita K; Seki K; Kamigochi I
    Water Sci Technol; 2002; 45(12):143-50. PubMed ID: 12201096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced acidogenic fermentation of food waste in a continuous-flow reactor.
    Han SK; Shin HS
    Waste Manag Res; 2002 Apr; 20(2):110-8. PubMed ID: 12058816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from whey permeate in a continuous anaerobic bioreactor by Kluyveromyces marxianus.
    Jedrzejewska M; Kozak K
    Environ Technol; 2011 Jan; 32(1-2):37-42. PubMed ID: 21473267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of microbial community and acidogenic intermediates to different water regimes in a hybrid solid anaerobic digestion system treating food waste.
    Xu S; Selvam A; Karthikeyan OP; Wong JW
    Bioresour Technol; 2014 Sep; 168():49-58. PubMed ID: 24923660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.