BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 35605855)

  • 1. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data.
    Wang Y; Zhang X; Sun W; Wang J; Ding S; Liu S
    Sci Total Environ; 2022 Sep; 838(Pt 2):156129. PubMed ID: 35605855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of hyperspectral data in predicting and mapping zinc concentration in soil.
    Sun W; Liu S; Zhang X; Zhu H
    Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images: A case study of Yushu County, Qinghai, China.].
    Yang LY; Gao XH; Zhang W; Shi FF; He LH; Jia W
    Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1775-1784. PubMed ID: 29737683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China.
    Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T
    Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism.
    Chen L; Lai J; Tan K; Wang X; Chen Y; Ding J
    Sci Total Environ; 2022 Mar; 813():151882. PubMed ID: 34822891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest.
    Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y
    Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional Inversion of Soil Heavy Metal Cr Content in Agricultural Land Using Zhuhai-1 Hyperspectral Images.
    Guo H; Yang K; Wu F; Chen Y; Shen J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the distribution patterns of heavy metal in soil from airborne hyperspectral imagery based on spectral absorption characteristics.
    Tan K; Chen L; Wang H; Liu Z; Ding J; Wang X
    J Environ Manage; 2023 Dec; 347():119196. PubMed ID: 37801949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest.
    Tan K; Wang H; Chen L; Du Q; Du P; Pan C
    J Hazard Mater; 2020 Jan; 382():120987. PubMed ID: 31454609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning.
    Tan K; Ma W; Chen L; Wang H; Du Q; Du P; Yan B; Liu R; Li H
    J Hazard Mater; 2021 Jan; 401():123288. PubMed ID: 32645545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollution level mapping of heavy metal in soil for ground-airborne hyperspectral data with support vector machine and deep neural network: A case study of Southwestern Xiong'an, China.
    Wang M; Wang C; Ruan J; Liu W; Huang Z; Chen M; Ni B
    Environ Pollut; 2023 Mar; 321():121132. PubMed ID: 36736814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas.
    Hou L; Li X; Li F
    J Environ Qual; 2019 Jan; 48(1):57-63. PubMed ID: 30640357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data.
    Tan K; Ma W; Wu F; Du Q
    Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating heavy-metal soil contamination state on the rate of stomach cancer using remote sensing spectral features.
    Mohammadnezhad K; Sahebi MR; Alatab S; Sajadi A
    Environ Monit Assess; 2023 Apr; 195(5):583. PubMed ID: 37072608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimate of soil heavy metal in a mining region using PCC-SVM-RFECV-AdaBoost combined with reflectance spectroscopy.
    Wang Y; Niu R; Lin G; Xiao Y; Ma H; Zhao L
    Environ Geochem Health; 2023 Dec; 45(12):9103-9121. PubMed ID: 36869963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy.
    Yousefi G; Homaee M; Norouzi AA
    Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data.
    Sun W; Skidmore AK; Wang T; Zhang X
    Environ Pollut; 2019 Sep; 252(Pt B):1117-1124. PubMed ID: 31252109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Using Rice Leaves Hyperspectral Data to Estimate CaCl
    Zhou W; Zhang J; Zou M; Liu X; Du X; Wang Q; Liu Y; Liu Y; Li J
    Sci Rep; 2019 Nov; 9(1):16084. PubMed ID: 31695089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.
    Naderi A; Delavar MA; Kaboudin B; Askari MS
    Environ Monit Assess; 2017 May; 189(5):214. PubMed ID: 28409353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.