These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3560646)

  • 1. The contribution of vascular obstruction to the functional defect that follows renal ischemia.
    Mason J; Welsch J; Torhorst J
    Kidney Int; 1987 Jan; 31(1):65-71. PubMed ID: 3560646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nephron function in the early phase of ischemic renal failure. Significance of erythrocyte trapping.
    Hellberg PO; Källskog O; Wolgast M
    Kidney Int; 1990 Sep; 38(3):432-9. PubMed ID: 2232485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure.
    Mason J; Torhorst J; Welsch J
    Kidney Int; 1984 Sep; 26(3):283-93. PubMed ID: 6513274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outer medullary circulatory defect in ischemic acute renal failure.
    Yamamoto K; Wilson DR; Baumal R
    Am J Pathol; 1984 Aug; 116(2):253-61. PubMed ID: 6465286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ischemic Renal Injury: Can Renal Anatomy and Associated Vascular Congestion Explain Why the Medulla and Not the Cortex Is Where the Trouble Starts?
    Ray SC; Mason J; O'Connor PM
    Semin Nephrol; 2019 Nov; 39(6):520-529. PubMed ID: 31836035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla.
    Olof P; Hellberg A; Källskog O; Wolgast M
    Kidney Int; 1991 Oct; 40(4):625-31. PubMed ID: 1745011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of water deprivation on local renal blood flow and filtration in the laboratory rat.
    Hope A; Tyssebotn I
    Circ Shock; 1983; 11(2):175-86. PubMed ID: 6640859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
    O'Connor PM; Kett MM; Anderson WP; Evans RG
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F688-94. PubMed ID: 16219913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of blood flow distribution in the rat kidney during postischemic renal failure.
    Vetterlein F; Bludau J; Pethö-Schramm A; Schmidt G
    Nephron; 1994; 66(2):208-14. PubMed ID: 8139741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canine renal vascular response to hyperoncotic dextran in kidneys with or without glomerular filtration.
    Gotshall RW
    Am J Physiol; 1983 Dec; 245(6):F687-90. PubMed ID: 6197889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute effect of cyclosporin on inner medullary blood flow in normal and postischemic rat kidney.
    Yagil Y
    Am J Physiol; 1990 May; 258(5 Pt 2):F1139-44. PubMed ID: 2337145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inner medullary collecting duct function in ischemic acute renal failure.
    Wilson DR; Honrath U
    Clin Invest Med; 1988 Jun; 11(3):157-66. PubMed ID: 3402104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis of acute renal failure following temporary renal ischemia in the rat.
    Arendshorst WJ; Finn WF; Gottschalk CW
    Circ Res; 1975 Nov; 37(5):558-68. PubMed ID: 1192555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inner medullary blood flow in postischemic acute renal failure in the rat.
    Yagil Y; Miyamoto M; Jamison RL
    Am J Physiol; 1989 Mar; 256(3 Pt 2):F456-61. PubMed ID: 2923224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of hypoxia to postischemic renal dysfunction.
    Galat JA; Robinson AV; Rhodes RS
    Surgery; 1988 Aug; 104(2):257-65. PubMed ID: 3400059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ischemia in the isolated erythrocyte-perfused rat kidney. Protective effect of hypothermia.
    Lieberthal W; Rennke HG; Sandock KM; Valeri CR; Levinsky NG
    Ren Physiol Biochem; 1988; 11(1-2):60-9. PubMed ID: 3249834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The angiotensin converting enzyme inhibitor enalapril in acute ischemic renal failure in rats.
    Koelz AM; Bertschin S; Hermle M; Mihatsch M; Brunner FP; Thiel G
    Experientia; 1988 Feb; 44(2):172-5. PubMed ID: 2831078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired medullary circulation in postischemic acute renal failure.
    Karlberg L; Norlén BJ; Ojteg G; Wolgast M
    Acta Physiol Scand; 1983 May; 118(1):11-7. PubMed ID: 6624494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging.
    Pedersen M; Laustsen C; Perot V; Basseau F; Moonen C; Grenier N
    Z Med Phys; 2010; 20(2):134-42. PubMed ID: 20540904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early events in ischemic renal failure in the rat: effects of antioxidant therapy.
    Bird JE; Evan AP; Peterson OW; Blantz RC
    Kidney Int; 1989 Jun; 35(6):1282-9. PubMed ID: 2770108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.