These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35606565)

  • 1. Binarity of a protostar affects the evolution of the disk and planets.
    Jørgensen JK; Kuruwita RL; Harsono D; Haugbølle T; Kristensen LE; Bergin EA
    Nature; 2022 Jun; 606(7913):272-275. PubMed ID: 35606565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A warped disk around an infant protostar.
    Sakai N; Hanawa T; Zhang Y; Higuchi AE; Ohashi S; Oya Y; Yamamoto S
    Nature; 2019 Jan; 565(7738):206-208. PubMed ID: 30598547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas flow and accretion via spiral streamers and circumstellar disks in a young binary protostar.
    Alves FO; Caselli P; Girart JM; Segura-Cox D; Franco GAP; Schmiedeke A; Zhao B
    Science; 2019 Oct; 366(6461):90-93. PubMed ID: 31604307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A disk of dust and molecular gas around a high-mass protostar.
    Patel NA; Curiel S; Sridharan TK; Zhang Q; Hunter TR; Ho PT; Torrelles JM; Moran JM; Gómez JF; Anglada G
    Nature; 2005 Sep; 437(7055):109-11. PubMed ID: 16136136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four annular structures in a protostellar disk less than 500,000 years old.
    Segura-Cox DM; Schmiedeke A; Pineda JE; Stephens IW; Fernández-López M; Looney LW; Caselli P; Li ZY; Mundy LG; Kwon W; Harris RJ
    Nature; 2020 Oct; 586(7828):228-231. PubMed ID: 33028998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of a massive protostar through the disk accretion of gas.
    Chini R; Hoffmeister V; Kimeswenger S; Nielbock M; Nürnberger D; Schmidtobreick L; Sterzik M
    Nature; 2004 May; 429(6988):155-7. PubMed ID: 15141204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength.
    Lee CF; Li ZY; Ho PTP; Hirano N; Zhang Q; Shang H
    Sci Adv; 2017 Apr; 3(4):e1602935. PubMed ID: 28439561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ∼0.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system.
    Tobin JJ; Hartmann L; Chiang HF; Wilner DJ; Looney LW; Loinard L; Calvet N; D'Alessio P
    Nature; 2012 Dec; 492(7427):83-5. PubMed ID: 23222612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Episodic molecular outflow in the very young protostellar cluster Serpens South.
    Plunkett AL; Arce HG; Mardones D; van Dokkum P; Dunham MM; Fernández-López M; Gallardo J; Corder SA
    Nature; 2015 Nov; 527(7576):70-3. PubMed ID: 26536957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analogs of the early solar system.
    Koerner DW
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):157-84. PubMed ID: 9150572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capture of the Sun's Oort cloud from stars in its birth cluster.
    Levison HF; Duncan MJ; Brasser R; Kaufmann DE
    Science; 2010 Jul; 329(5988):187-90. PubMed ID: 20538912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A circumstellar disk associated with a massive protostellar object.
    Jiang Z; Tamura M; Fukagawa M; Hough J; Lucas P; Suto H; Ishii M; Yang J
    Nature; 2005 Sep; 437(7055):112-5. PubMed ID: 16136137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Windows through the dusty disks surrounding the youngest low-mass protostellar objects.
    Cernicharo J; Noriega-Crespo A; Cesarsky D; Lefloch B; González-Alfonso E; Najarro F; Dartois E; Cabrit S
    Science; 2000 Apr; 288(5466):649-52. PubMed ID: 10784443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binarity and Accretion in AGB Stars: HST/STIS Observations of UV Flickering in Y Gem.
    Sahai R; Sánchez Contreras C; Mangan A; Sanz-Forcada J; Muthumariappan C; Claussen MJ
    Astrophys J; 2018 Jun; 860(2):. PubMed ID: 30185992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk.
    Eisner JA
    Nature; 2007 May; 447(7144):562-4. PubMed ID: 17538613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolved images of a protostellar outflow driven by an extended disk wind.
    Bjerkeli P; van der Wiel MH; Harsono D; Ramsey JP; Jørgensen JK
    Nature; 2016 Dec; 540(7633):406-409. PubMed ID: 27974756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protostellar feedback halts the growth of the first stars in the universe.
    Hosokawa T; Omukai K; Yoshida N; Yorke HW
    Science; 2011 Dec; 334(6060):1250-3. PubMed ID: 22075723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The birth environment of planetary systems.
    Parker RJ
    R Soc Open Sci; 2020 Nov; 7(11):201271. PubMed ID: 33391806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The building blocks of planets within the 'terrestrial' region of protoplanetary disks.
    van Boekel R; Min M; Leinert Ch; Waters LB; Richichi A; Chesneau O; Dominik C; Jaffe W; Dutrey A; Graser U; Henning T; de Jong J; Köhler R; de Koter A; Lopez B; Malbet F; Morel S; Paresce F; Perrin G; Preibisch T; Przygodda F; Schöller M; Wittkowski M
    Nature; 2004 Nov; 432(7016):479-82. PubMed ID: 15565147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The onset of planet formation in brown dwarf disks.
    Apai D; Pascucci I; Bouwman J; Natta A; Henning T; Dullemond CP
    Science; 2005 Nov; 310(5749):834-6. PubMed ID: 16239438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.